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1. INTRODUCTION 

The theme of this note is to use the classification of  differential equations in 

positive characteristic and the conjectures of A. Grothendieck and N. Katz for 
finding symbolic solutions or factorizations of differential operators over Q(z). 

The paper of N. Katz [K1] lies at the origin of this note. The main tool is the 

p-curvature for differential equations in characteristic p. 
For an n x n-matrix A with coefficients in Q(z) we consider the linear 

homogeneous differential equation y '  + A y  = O. 
For almost all primes p (i.e. with finitely many exceptions) one can reduce A 

modulo p, the resulting matrix A has coefficients in the field Fp(z). This leads to 

the linear homogeneous differential equation y ' +  A y -  0 over Fp(z). The 

p-curvature of this equation is the Fp(z)-l inear map 

+ A : r , (z)  n. 

There is an obvious algorithm for the p-curvature, namely: 
Define the sequence of matrices A(k)  by 

A(l) :=A and A ( / , + l ) = d ( A ( / , ) ) + A . A ( / , ) ,  then 

.~,:, - A (p )  modulo p. 
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The p-curvature of the order one equation y~ = ry can be seen to be t)p = 
r( p 1) + rp modulo p. 

The importance of the p-curvature is given by the following lemma. 

Lemma 1.1. ~;,p = 0 i f  and only (f y '  + Ay = 0 has a fundamental matrix with 
coefficients in Fp(z). 

A finer result on the p-curvature is the following. For the differential equa- 
tion y'  + Ay = 0 one can define a differential Galois group. This is an abelian 
group scheme of height one over the field Fp(zP). The Lie-algebra of this group 
scheme is the commutative p-Lie algebra over Fp(z p) generated by ~'p. See [A1, 
A 2] and [P]. 

We will state the two conjectures above in a simplified form. 

Grothendieck ~" conjecture asserts that the following statements are equivalent. 
(1) y~ + Ay - 0 has a.fundamental matrix with as coefficients algebraic func- 

tions. 
(2) For almost all primes p the p-curvature is O. 

The implication (1) =~ (2) in Grothendieck's  conjecture is easily proved. 

Katz' conjecture concerns the differential Galois group G of the equation 
y '  + Ay = 0 and its Lie-algebra Lie(G). The statement is: Lie(G) is the smallest 
algebraic Lie-algebra in M(n x n, 0,) such that Lie(G) 'contains' ~pfor almost all 
primes p. 

N. Katz has proved Grothendieck's  conjecture in many cases and has shown 
that this conjecture is equivalent to the one of  Grothendieck. 

The difficulty in trying to use the p-curvature for finding symbolic solutions 
(or the differential Galois group) of the equation y'  + Ay = 0 is the expression 
'almost all primesp' .  For order one equations we will show how one can specify 
'almost all' by using a method of  Rothstein and Trager. (See [L]). 

For a differential field k with a derivation written as t we denote by k[O] the 
skew ring of differential operators. Its structure is given by the formula 0a = 
aO + a ~ with a c k. The ultimate goal is to factorize a given differential operator  
L over the field Q(z) by computing the factorizations of  the reduction L c 
Fp(z)[O]. We propose here some methods for factoring L and L. A complete 
algorithm seems not within reach at the moment.  For order two operators L 
however, a fairly complete procedure for factoring L is given. 

Order two differential equations in positive characteristic have also been 
studied in [J, Ks]. An algorithm for order two differential equations in positive 
characteristic is developed in [Ho]. 

I would like to thank Frits Beukers for his helpful comments. 
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2. RESULTS ON DIFFERENTIAL EQUATIONS IN CHARACTERISTIC p 

In this section we give some proofs  and s ta tements  which will be used in the 

sequel. The differential field k is supposed to have character is t ic  p > 0. We 

suppose that  [k : k p] = p and we fix a z E k such that  k = kp(z). The differ- 
ent iat ion ' o f  k is defined by z '  = 1. A differential module  M over k will be a 
finite d imensional  vector  space over  k equiped with a kP-linear map  0 : M -+ M 

satisfying O(fm) - f ' m  +fOre (with m C M a n d f  c k). The p-curva ture  % is 
simply the k-l inear m a p  0 p on M. 

Lemma 2.1. The p-curvature oJ'a differential module M is 0 i f  and only i f  M is 
trivial, i.e. there is a basis e l , . . . ,  em of  M over k with O(ei) 0 for all i. 

Proof. I f  M is the trivial module  then obviously  the p-curva ture  is 0. On  the 

other  hand,  suppose that  0 p is 0 on M. Then 0 is a ni lpotent  kP-linear ope ra to r  

on M and has an element el ¢ 0 in its kernel. By induct ion  the module  M/ke l  
has a basis ~2,. • . ,  e,~ with 0(~)  = 0. Let  ei (for i > 1) denote  a lift o f  ei to M. 
Then Oei =aie l  for some ai C k. Then OP(ei)=a~P-')e ,  and so a~ v - ' )  = 0 .  It 

follows f rom a,! p l) 0 that  there exists bi E k with b '  = a,. The elements 

el,e2 b 2 e l , . . . , e m - b m e l  f o r m a b a s i s o f M o n w h i c h O i s O .  [] 

Lemma 2.2. (1) For the one-dimensional module k with Oe = re one has OP(e) = 
(r (p-I)  + rP)e. Further r (p-l) + r p C k p. 

(2) For r E k one has r (p 1) + r p = 0 i f  and only i f  r = f ' / f  Jbr some f E k*. 

Proof. (1) Define the m a p  r : k ---+ k as follows: 
l f 0 e  = re then OPe = r(r)e. As we have seen in the in t roduct ion  - r ( r )  is the 

cons tan t  term in the expression ((d/dz) - r) p. A calculat ion shows that  r(r)  = 

r ( p - 1 )  4_ rp" (See [P], L e m m a  1.4.2.) The derivative o f  r ( r )  is seen to be 0 and so 
~-(r) c kp. 

(2) Accord ing  to 2.1, t hep -cu rva tu re  is 0 if and only if there exists a n f  c k* 
with O(fe) = O. The last condi t ion  is equivalent  to r _( )c , / f ) .  [] 

2.1. Classification of differential modules over k 

We summar ize  here results f rom [P]. We will use the no ta t ion  t = 0 p. The 
center  Z of  k[O] turns out  to be the po lynomia l  r ing kP[t]. For  every monic  
irreducible po lynomia l  F E kP[t] and every m _>1 one can define an in- 

decomposab le  differential module  I ( F " ) .  Ifk[O]/(F) happens  to be a skew field 
then I (F  m) is equal to k[O]/(Fm). Ifk[O]/(F) is not  a skew field then k[O]/(F) is 

i somorph ic  to M ( p  x p, Z / ( F ) )  (i.e. the ring o f  p × p matr ices  over the field 
Z / ( F ) ) .  In this case k[O]/(F m) ~ M ( p  x p , Z / ( F m ) ) .  The module  I (F  m) is 

equal to (Z / (Fm))  p with the obvious  act ion o f  M ( p  x p, Z / ( F " ) )  and therefore 

equipped with a left act ion o f  k[O]. 
The set {I(Fm)}  is the set o f  all indecomposab le  differential modules  over k. 

Fur ther  any differential module  N is a direct  s u m  E F  .... l (Fm) e(F'm). The 
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numbers  e(F, m) are uniquely determined by N. They can be found by calcu- 
lating the dimensions of  the k-vector spaces ker (F  m (~p), N). 

Let N be a differential module over k of  dimension n. In order to find the 
decomposi t ion of N into indecomposable modules one views the opera tor  
0 : N -~ N as a kP-linear map. Let F ( T )  denote the characteristic polynomial  
of  0 on N. This polynomial  in k?[T] has degree pn. The characteristic poly- 
nomial  of  0 p on N (still considered as a kP-linear map) is easily seen to be 
F ( T  l/p)p The characteristic polynomial  G(T)  of 0 p, considered as a k-linear 
map  on N, is then F(T1/P). We note that G(T)  lies in k?[T]. 

Let G - F1 m' . . .  Fs m" denote the factorization of G in kP[T] with monic dis- 
tinct and irreducible Fi. The module N has a unique direct sum decomposi t ion 
N = (~i Ni where the differential module Ni has Fi  mi a s  characteristic poly- 
nomial  for its p-curvature.  

The further decomposi t ion of Ni has the form (~l < m <mi I(Fim) e(F'' m), where 
the numbers  e(F/, m) can be found by calculating the dimensions of  the kernels 
of the action of  Fim(~pp) acting on N/ (o r  N). 

We note that the case where k[O]/(F) (for some monic irreducible F C kP[t]) 
is a skew field is rather exceptional. This exceptional case will not concern us in 
this paper. 

3. EQUATIONS OF ORDER ONE 

3.1. Order one homogeneous equations 

One considers the equation y ' =  ry with r C Q(z)*. Grothendieck 's  con- 
jecture is known to be true in this case. So we know that: 

There is an algebraic solution ¢ 0 if  and only ~( for almost all primes p the 
p-curvature is zero. 

We study a possible p roof  of  this statement and specify the term 'a lmost  all 
primes'.  First we have to see how reduction modulo  a pr ime p works for 
operators.  

A polynomial  P E Z[z] is called primitive if the g.c.d, of  the coefficients of  P 
is 1. The ring R denotes the localization of Z[z] at the set of  unit polynomials.  
The proper  ideals of  R are the nR with n > 1. For any prime p the ring R / p R  is 
equal to Fp(z). The ring R is invariant under the differentiation of Q(z). For 
every non zero r E Q(z) there are unique positive integers t, n with g.c.d, one 
such that r - ( t / n ) f  with f E R*. We will call t and n the numera tor  and the 
denominator  of  r. For a pr ime p which does not divide the denominator  of  r we 
write rp, or r mod  p, for the image o f r  in Fp(z). 

We will call an operator  L := ~ i  ai Oi c R[O] a primitive operator if the ideal 
in R generated by the coefficients ai is the unit ideal of  R. The product  of  two 
primitive operators  is again a primitive operator.  Indeed, for every prime p the 
skew ring R[O]/(p) is equal to the ring F?(z)[O]. The latter ring has no zero 
divisors. 
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Consider a monic operator  L with coefficients in R[1/m], for some positive 
integer m. Let a factorization L = L1 L2 with monic  operators  L, by given. From 
the observations above it follows that L1 and L2 have their coefficients in 
R[1/m]. In particular, for any prime p which does not divide m one finds a fac- 
torization L --~ L1 L2 in the ring Fp(z)[O] by reduction modulo  p. The classifi- 
cation of  differential equations in characteristic p will be used to provide the 
possible factorizations of  L. An ult imate goal is to find factorizations of  L by 
combining factorizations L for suitable primes p. 

We return now to the first order equation. There is a rational number  A with 
.~rR = R. We normalize r by requiring that r E R*. This does not change the 
problem. 

Write r = a/b with a,b ~ Z[z] primitive polynomials  with g . c .d . ( a ,b )=  1. 
Necessary conditions for the equation to have algebraic solutions are: b has no 
multiple roots and that the degree of a is less than the degree of b. 

We will assume that r = a/b satisfies these conditions. 
By assumption the resultant resultantz(b, b ' )  is not zero. Let the integer M 

denote the absolute value of this resultant• We note that the highest coefficient 
of b divides M. Let K denote the splitting field orb.  Then the ramified primes in 
K are divisors of  M. 

We apply a method of Rothstein and Trager to the equation yt = ry. This 
consists of considering the resultant R(x) : -  resultant~(a - xb', b) E Z[x]. Let 
f2 ~ Q denote the splitting field of  R(x). Let c~ be a zero of R(x). Then the g.c.d. 
(a - c~b', b) is not trivial and hence is divisible by z - 3 where 3 is a zero ofb.  It 
follows that c~ = a(3) /b ' (3) .  Therefore J ) i s  a subfield of  K. Any prime p not 
dividing M is therefore unramified in ~). We note further that for any zero 3 of 
b, the zero a(3) /b ' (3 )  of  R(x) is the localexponent of the equation y '  = ry at 3. 
In particular, zeroes of  R(x) are the local exponents of  the equation. 

I f  the equation y' -~- ry has an algebraic solution its differential Galois group 
over Q is finite cyclic of  order m. Then there is a non trivial solution f ¢ Q(z) of 
f '  = turf. For any element a in the Galois group of Q/Q the element a ( f )  is 
also a solution of the equation and so o-(f) = c(cr)f for some c(~) c Q*. The 
map  cr ~ c(~) is a 1-cocycle. By Hilbert  90, the group H l (GalQ, Q*) is trivial. 
Hence there is also a solution f ¢ Q(z)* o f f '  = mrf. 

Lemma 3.1. y' ry has a non trivial algebraic solution if and only ([" f2 = Q. 

Proof. Suppose that an algebraic solution ~ 0 exists. Let m > 1 be minimal 

such that there exists a f c Q(z)* with f ~ =  turf. Normal ize  f such that 
f c R*. Write f = f l  n~ . . . f , s  where J~ , . . .  ,~. are distinct irreducible unit poly- 
nomials in Z{z] and where the n l , . . . ,  ns ~ Z \ {0}. The minimali ty of  m implies 
that the g.c.d, of  {n l , . . .  ,ns} is 1. 

n ' !  • As a consequence mr = ~ ( iJi/Ji) and b = :k f l  -. "Z. We may suppose that 

b = f l  "" "f~. Then 

1 iJi ~ ni , 
. . . . . .  x . . . . ? , . . . L .  

a xb' n ~ j  } ~ .~f// J i=1 m 
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Fur the r  R(~)  - 0 if and  only if the g.c.d.(a c~b',b) is not  1. The  last  state-  
men t  is equivalent  to a = ni/m for  some i. There fore  all the zeroes o f  R are 
rat ional .  

Suppose  tha t  all the zeroes o f  R(x) are rat ional .  Wri te  A1,. • . ,  As for  the dis- 
t inct  zeroes. We note  tha t  R(0) ¢ 0. L e t f  := g . c . d . ( a -  Aib', b) be no rma l i zed  
such tha t  Ji is a pr imi t ive  po lynomia l .  For  i C j  one has  g . c .d . ( f , J ) )  = 1 since 
g .c .d . (b ' ,b )  = 1. H e n c e f l  - --fs  ] b. In order  to see the equal i ty (up to a sign) it 
suffices to show that  any zero/3  ¢ K o f b  is also a zero of  j]  . . . ~ .  By a s s u m p t i o n  
b'(/3) ¢ O. Then  a - (a(/3)/b'(/3)) and b have the c o m m o n  zero/3 .  It  follows 
tha t  a(/3)/b'(/3) = Ai for  some i and  tha t /3  is a zero o f  Ji. 

H e n c e f l  --.f~ = b. It  is easy to see now that  r = ~,i Ai(f.'/f-). One finds the 
a lgebraic  solut ion y = Hi  f/~'  o f y '  = ry. [] 

Proposition 3.2. Suppose that f2 = Q. Then 
(1) The minimal m > 1 such that f '  -- mr f  has a solution f E Q(z) ~ is a divisor 

of M := [resultantz(b ' ,  b)[. 
(2) For p /~ M the p-eurvature, i.e. r(p l) + r p rood p, is zero. 

Proof .  (1) The  highest  coefficient o f  R(x) ¢ Z[x] is equal  to ± resul tant~(b ' ,  b). 
Let  A1 , . . . ,  A~ denote  the zeroes of  R(x). Then  all M/~i C Z. Using the p r o o f  of  
the last  l e m m a  one sees tha t  there is a solut ion f ¢ Q(z)* of  f '  = Mrf.  This 
proves  (1). 

(2) Let  f ¢ Q(z)* with f '  = M r f  be no rma l i zed  such t h a t f  C R*. Then  

(Mr)(p ,) +(Mr)P = M(r(p 1 ) + r  p) = + \ f  J 

- 0 m o d p .  [] 

Proposition 3.3. Suppose that (2 ~ Q. Suppose that the prime p does not divide 
M := [resultantz (b' ,  b)[. Then p is totally split in ~2 i f  and only ifthep-curvature of  
the equation y ~ ry is O. 

Proof .  We write a and  b for the reduct ions  of  a and b m o d u l o  p. Since p does 
not  divide the resul tant  o f  b and  b 1, the degree of  b is the same as the degree of  b 
and g .c .d . (b ' , b )  = 1. Let  F(x ) :=  resultantz(a-xb~,b) .  Then  F(x) is the re- 
duc t ion  of  R(x) m o d u l o  p. Let  # 1 , . . . ,  #r c Fp be the set o f  zeroes o f F ( x ) .  Put  
vi : -  g.c.d.(a - #ib ~, b ). Then  we c la im tha t  (t/b = ~ i  ~i(v~/vi). 

Indeed,  every vi divides b. Fu r the r  g .c .d . (v i ,~ ) )=  1 if i C j  because  
g . c . d . ( b ' , b ) -  1. Hence  Vl-. .v,.  divides b. ge t  3 E / ~ p  be a zero of  b. Then  
a(/3)/b'(/3) is a zero o f F ( x )  and  so equal  to some  #i. Then  rA is a zero of  vi. This 
shows that  b vl . . .  v~. Fur the r  every  vi and hence b divides d - ~-]i Ili(v~/vi) b. 
The  degree of  the last  express ion  is less than  the degree of/~. There fore  the ex- 
press ion  is 0 and  a/{~ = ~ i  ~i(vS/vi). The  p -cu rva tu re  is equal  to 

+ . i )  vi 

i l"i 

372 



It follows that  the p-curva ture  is zero if  and only if all #i ~ Fp. Since F(x )  is 
the reduc t ion  o f  R(x) modu lo  p, the condi t ion  that  all the roots  o f F ( x )  are in Fp 

is equivalent  to p is totally split in the field (2. [] 

3.1.1. Examples  

(1) r = z / ( z  2 + 1). The resultant  o f  b and b '  is 4. The 2-curvature  r ' +  
r 2 m o d  2 is equal to 1/(z  2 + 1) 2 ~ 0 m o d  2. The minimal  m such that  f '  - m f  

has a solut ion in Q(z)* is m = 2. The p-curva ture  is 0 for all p :f  2. 
(2) r = l / ( z  2 - 2). Then  R(x)  -- - 8 x  2 + 1 and f2 = Q(x/2). Then  p is split if 

p ~ ±1 m o d  8. The equat ion  y ' =  ~y over Fp(z) has a solut ion # 0 since 

= (a l / ( z  - bl)) + (a2/(z b2)) with al ,a2 ,b l ,b2  c Fp. Hence  the p -curva ture  
is 0. 

I f  p is inert, i.e. p =- ± 3 m o d  8, then ~ = (al/(Z - bl )) + (a2/(z - b2)) with al, 
a2, bl, b2 C Fp2. The p-curva ture  is then easily seen to be ((a~ - al ) / ( z  - bl)P) + 
((a p - a2)/(z  - b2)P). However  al and a2 are not  in Fp and so the p -curva ture  is 
not  zero. 

3.2. Symbolic integration 

For  r E Q(z) one wants  to know whether  y '  - r has a solut ion in Q(z). Write 

r -- (a/b) + c, where a, b, c c Q[z] satisfy g.c.d.(a, b) = 1, the degree o f  a is less 

than the degree o f b  and b is a primitive polynomia l  in Z[z]. After  mult iplying r 
with an integer we m a y  assume that  a, c E Z[z]. The degree m of  c and the 

highest  mult ipl ici ty n o f  the zeroes o f  b play both  a role. Put  s = max(2  + m, n). 
The square-free decompos i t ion  o f  b has the fo rm b = bib 2. .  .b~ with all bi 
primitive polynomia ls  in Z[z] and b :=  bib2 •..  b~ square-free. Let  M denote  the 
absolute value o f  the resultant  of/~ and b' .  

In order  to find an expression for the p-curva ture  we consider  the differential 

module  over Q(z) with basis el, e2 and 0el = re2; 0e2 = 0. The element el is a 
cyclic element with minimal  po lynomia l  0 2 -  (r'/r)O. The cor respond ing  

equa t ion  y"  - (r ' / r )y '  0 is the h o m o g e n e o u s  equat ion  associated with y '  - r. 
Then  OP(el) = r (p 1)e2 and OPe2 - O. Hence the p-curva ture  is 0 if and only if 

r(p 1) ~ 0 modu lo  p. Our  problem is to find the relat ion between solvability o f  
the equat ion  and p-curvature .  

Proposition 3.4. (1) Let y '  = r have a solution in Q(z). Then for  ever)' prime p 
with p X M and p >_ s the p-curvature is O. 

(2) Let  y~ - r have no solution in Q(z). There are only finitely many primes p 
/or which the p-curvature is O. 

Proof. Let T denote  Z [ l / M ( s  1)!]. Then r c = (a/b) = (a / (b lb  2 . . . b $ ) )  = 
(A/(b, -.-b,. 1 )) - (B/b~) holds with cer tain A, B c T[z 1. Write B = Cb~ + Dbs 
with C, D E T[z]. Then 

B ( C ( 1  s ) ' ) '  C ' ( l - s ) - l  + D  
b~, - b ?  -1 - -  bs  - 1 
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In particular we have written r =  ( E / ( b l b 2 . . . ( b , _ l b s ) ' - l ) ) + ( F / n s ~ - l )  ' 
with E, F c T[z]. After finitely many steps of this type one finds a formula 

r = c +  b l b 2 . . - b ,  + b~b~- .b;r  

with G, H C T[z]. Further c has a primitive in T[z]. 
In case (1) the term G is zero and so for all primes p of T we have that the 

p-curvature is 0. 

In case (2) the term G is not 0. For a pr imep of T which does not divide G (i.e. 
G is not zero modulo p), the reduction modulo p of  the term G / ( b l b 2 . . .  b,) is 

not zero and has a simple pole. Therefore r (p-  11 is not zero modulo p and the 
p-curvature is not 0. [] 

Remark 3.5. In the second case of the proposition it seems difficult to give an a 
priori estimate of the exceptional primes in T, since we do not know G before- 
hand. 

3.3. The Risch equation 

This is the equation y '  = ry + s with r,s C Q(z). We suppose that rs ¢ 0 and 
we are interested in algebraic solutions of the equation. Suppose that there 

exists a solution yo which is algebraic but does not lie in Q(z). Let K be a finite 
Galois extension of Q(z) which contains Yo and let the Galois group of this 

extension be G. Let IG] denote the order of G. Then Yl := (I/]Gt) ~ a  ~(yo) 
lies in Q(z) and is still a solution of the equation. Hence we may as well ask for a 
solution y c Q(z). 

Let M be the differential module over Q(z) generated by el; e2 and satisfying 

Oel - ret + se2; 0e2 = 0. Then there is an exact sequence of  differential modules 

0--+ Q(z)e2 -~ M ~  N ~ 0 ,  

where N -  O(z)e3 with 0e3 = re3. The existence of a solution in Q(z) of 

y '  = ry + s is equivalent to the splitting of this exact sequence. 

Let us for convenience suppose that r, s E R, then the modules have an ob- 
vious structure of differential modules over R. in particular one can reduce the 

exact sequence modulo any prime p. The images of r and s in Fp(z) are denoted 
by rp and sp. The existence of a solution in Fp(z) of y ~ = r p y - - S p  is again 

equivalent to the splitting of the exact sequence of the reduced modules. 

If  the module Fp(z)e3 with 0e3 = rpe3 is not the trivial module, or equiva- 
(p 1) lently if the p-curvature rp ÷ r p 7L 0, then the classification of differential 

modules over Fp(z) asserts that the sequence splits. Hence there is a solution 

yp 
If  the p-curvature r(p p l) + rp 0 then a solution yp E Fp(z) exists if and 

only if the p-curvature of M is O. 

Using this knowledge one can make examples where y '  = ry + s has no so- 

lution in Q(z) and where there is a solution o f y '  = rpy + Sp for every prime p. 
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Suppose that a solution y c Q(z) exists. Then for a prime which does not di- 
vide the denominator  of  y one can reduce y to a solution in yp E Fp(z). I f p  di- 
vides the denominator  then for some m > 1 the reduction o f f  ofpmy  modulo  p 
exists and is not 0. Then f satisfies the equation f '  = rpf. This means that the 
p-curvature rll p- l )  ± r p of  Q(z)e3 is 0. As we will see any such prime can be a 
denominator  of  y. 

The conclusion seems to be that the relation between the Risch equation and 
its reductions modulo  primes is not obvious at all. This is illustrated by the 
following examples. 

3.3.1. Examples 

(1) The equation y'  -- (1 /zZ)y  + 1 has no solution in Q(z). Indeed, a possi- 
ble solution y is easily seen to be of  the form z 2F where F is a polynomial.  The 
equation becomes zZF ' ÷ (2z - 1)F = 1. Over the field Q one sees that the de- 
gree o f z Z F  ' + (2z - I ) F  is one higher than the degree o fF .  Hence there is no 
solution. 

Moreover  the p-curvature of  Q(z)e3 is easily seen to be z -2p modulo p for 
every prime p. Hence there is a solution yp E Fp(z) for every p. 

One can make this example more explicit by the substitution of y = z2F 
where F denotes a polynomial  over Fp. One considers the vector space V of the 
polynomials  of  degree <_ p - 2. The map  F ~+ z Z F  t -- (2z -- 1)F is injective be- 

cause the homogeneous equation has no solution 7 ~ 0 in Fp(z). Thus there is an 
FpE V, i n f a c t o f d e g r e e p  2, withz2Fp + ( 2 z  - l ) F p =  l. 

It is interesting to compare  this with the unique formal power series solution 

Y~ =-: - z 2  ~ n > 0  (n + 1)!z" of  the equation. This divergent power series has as 
reduction modulo  p the unique solution yp - zZFp. It seems that the reductions 
modulo  p have some relation with the Stokes theory of  this example. 

Another  translation of  the example above is the following: 
The associated second order homogeneous  equation is y ' - ( 1 / z 2 ) y l +  

(2 / z3)y  = 0. This equation has only the trivial solution in Q(z). For every p 
there is a non trivial solution in Fp(z). 

(2) The equation ) , / = ( 1 / ( z  2 - 2 ) ) y - ( ( z  2 - 3 ) / ( z  2 - 2 ) ( z - 3 )  2 ) has as 

solution (z + 3)/7(z 3) with 7 in the denominator!  In a similar way one can 
make for any prime p with p - ±1 modulo  8, an example of  a rational solution 
y of  an equation y / _ ( 1 / ( z  2 2 ) ) y + s w i t h s c  R and p in the denominator  
o fy .  

3.3.2. More examples 

In connection with the first example of 3.3.1, F. Beukers has raised the fol- 
lowing question: 

Let yt = ay + b be a differential equation over Q(z) such that every singular 
point o f  the equation y '  ay is regular singular. Suppose that the equation has~)r 
almost all primes p a solution modulo p. Does the equation have a solution in Q(z)? 
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One can give the assumption in the question a precise meaning as follows. 
The equation is defined over some field K(z) where K is a number field. The 
assumption is that for almost every maximal ideal q of the ring of integers of K 
the reduction modulo q exists and has a solution Fq(z), where Fq denotes the 
residue field of q. 

A test-case 

One considers the equation 

y,__ ( a + l  b + l )  
+ y + l  wi tha ,  b E Q \ z .  

Z - -  1 

A solution y C Q(z) of this equation must have the form (z 2 - z )F  where F is a 
polynomial with coefficients in Q. The term 

L ( F ) : : y  I ( a ~ l  b + l  t + v 

is equal to (z 2 - z)F '  + (( a -  b)z + a)F. In particular L(z k) = 
(k - a b )z k + l + ( - k  + a)z ~. It follows that the linear map L : Q[z] ~ Q[z] 
has 1 in its image if and only if a + b is an integer _> 0. 

Let K : Q(a, b). For a maximal ideal q of the ring of integers of K, lying 
above the rational prime p, we calculate now whether the equation has a solu- 
tion 'modulo p'. We consider only the q such that the equation has a reduction 
modulo q. 

If  the homogeneous equation y '  = (((a + 1)/z) + (b + 1)/(z 1))y has only 
the trivial solution modulo q then one knows (as before) that the inhomo- 
geneous equation does have a solution modulo p. A direct proof is the follow- 
ing: 

The map y ~-+y ' -  ( ( (a+  l)/z) + (b+  1 ) / ( z -  1))y from ffp(Z) into itself is 
linear over/~p(zp) and has kernel 0. Hence the map is bijective. 

The homogeneous equation y '  = (((a + 1)/z) + (b + 1)/(z 1))y does have 
a solution modulo q if and only if the reductions of a and b modulo q exist and 
lie in Fp, where q lies above the rational prime p. We suppose now that the 
homogeneous equation has a solution modulo q. 

Let No = No(q), N1 = N1 (q), with 0 _< Ni < p denote the representatives of 
a and brood q. A solution of the homogeneous equation is then y0 : 
zNo +l(z _ 1)N, +1. By variation of constants (i.e. y = Y0f) one transforms the 
inhomogeneous equation into f ' - - z - N ° - - l ( z  1) Ul 1 o r  z P ( z  - 1 ) P f  ' :  

zp-N0 1(7 ~ 1) p N I --1.  This is solvable if and only if this polynomial has no 
term z p ~. This condition is equivalent to 

No + Ni >_ p. 

The question of F. Beukers for this special equation translates into: 

Suppose that .['or almost all maximal ideals q of  the ring of  integers of  K - 
Q(a, b) with residue field the prime field Fp, one has that No(q) + N1 (q) > p. Is 
a + b a non-negative integer? 
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Example a = ½ and b : ! 
3 

F o r p  ¢ 2,3 one has N0(p) = ( p +  1 ) / 2 a n d U l ( p )  = (ep+ 1)/3 with c : 1,2. 
Thus  No(p) + Nl (p)  = ((3 + 2e)p + 5)/6. Accord ing  to Dirichlet  theorem on 
pr imes in an ar i thmetic  progression,  there are infinitely m a n y  pr imes p with 

p - - 1  m o d  3. For  this infinite set o f  pr imes c = 1 and No(p) + NI(p)  < p. 

The case where a, b are rational 
P u t a  = to~no; b = tl /nl with 1 < no _< nl and g.c.d.(t0,n0) = g.c.d.( t l ,nl)  = 1. 

By Dirichlet 's  theorem we can choose  infinitely m a n y  Nl ' s  such that  

nlN1 - t l  : p with p prime. Then  N1 : - N l ( p )  and No(p) = (cp + to)/no with 

! < c < no - 1. Clearly No(p) + N I ( p )  = ((no + n l c ) p + n l t o  +notl) /nonl .  Let 
be the set o f  pr imes such that  n~Nl(p) tl = p  and N o + N l  >_p. By as- 

sumpt ion  E is infinite. This implies that  ( n o + n l ( n o -  1))/non1 _> 1 and so 
n 0 : n l .  Fur the r  for a lmost  all p E E  we have c = n 0 - 1  and therefore 

(nlto + notl)/nonl is an integer and > 0, This proves that  a + b is a nonnegat ive  
integer. The conclus ion  is that  Dir ichlet 's  theorem implies the s ta tement  for 

a, b E Q \ Z.  One can show that  Dir ichlet 's  theorem on pr imes in an ar i thmetic  
progress ion  is equivalent  to the positive answer o f  the s ta tement  for a ,b  c 
Q \ Z .  

The case where a or b is not rational 
We have not  found an example where the ques t ion has a negative answer. To 

illustrate the quest ion we take a = ¼ and  b = i. The pr imes that  we are inter- 

ested in are the p with p - 1 m o d  4. For  such a pr ime one has No(p) = 
(3p + 1)/4. Suppose that  the quest ion has a positive answer. Then  there are in- 

finitely primes p, with p _= 1 m o d  4 such that  the n u m b e r  N1 defined by 0 < 
N1 < (p/2) and NI 2 = - 1  m o d p  satisfies N1 < (p/4). 

It seems to be u n k n o w n  whether  the last s ta tement  is true. The s ta tement  is 

rather  close to the open  question,  raised by Hardy  and Lit t lewood,  whether  
there are infinitely m a n y  integers x for which x 2 + 1 is a pr ime number.  

4. HOMOGENEOUS EQUATIONS OF ORDER TWO 

We will assume that  the differential field has character is t ic  ¢ 2. Any  opera tor  
02 + aO + b can be t rans formed  into 02 - r b y  applying the shift 0 ~ 0 - (a/2).  

Hence  it suffices to s tudy 02 - r and the equat ion  y"  = ry. 

4.1. The p-curvature of the equation y" ry 

As in Section 2 we suppose that  k is a field o f  character is t ic  p such that  
[k : k p] = p. One fixes a z E k such that  k = kP(z). The differentiation r o f  k is 
given by z ~ =  1. The differential module  N cor respond ing  to 0 2 -  r (or to 

y "  = ry) has basis e, 0e and satisfies 0Ze = re. Euclidean division in k[O] im- 
plies tha t  O P = A ( O Z - r ) + f O + g  for cer ta in  f ,  g c k .  Then 0 p + I -  

(OA + f ) ( 0  2 - r) + ( f '  + g)O + (fr + g').  Hence  OPe = ge +fOe  and OP(Oe) = 
(fr + g ' )e  + (J'~ + g)Oe. The fo rm o f  the opera to r  0 2 - r implies tha t  the sec- 
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ond exterior  power  AZN of  N has a trivial 0-act ion and trivial p-curvature .  It 
follows that  the matr ix  o f  the p-curva ture  o f  N has trace 0. Therefore  g = - ½ f ' .  
The matr ix  o f  0 p = ~pp on the basis e, 0e o f  N reads (1 

- ~ f  f r  2J  

f 1 ! " ~ f  

1 "It The de te rminan t  of~pp is - ~ ( f ' ) 2  f 2 r  + ~ f J  . Accord ing  to 2.1 this term lies 
in k p and its derivative is therefore 0. This leads to the differential equat ions  

f(3) _ 4f(1)r  2 f r  (1) = 0 for f .  We note that  this differential equat ion  is the 
second symmetr ic  power  o f  the equat ion  y (2) _ ry. 

In  general, the term f is some fo rmula  in r and its derivatives, depending  on 

the pr ime p. The fo rmula  can be found by Eucl idean division in k[O I. For  
p = 3, 5, 7, 11, 13 one finds the formulas  for f :  

r; r 2 + 3r2; r 3 + 10r 2 + 13rr2 + 5r4; 

r 5 + 160r2r~ + 70r3r2 + 792r2r2 + 531rr 2 + 818rrlr3 + 336r~ 

+ 166r2r4 + 558r2r4 + 306rlr5 + 9 1 r r 6  + 9r8; 

r 6 + 380r3rl + 880r 1 ÷ 125r4r2 + 7172rr2r2 + 2401r2r2 + 3465r~ 

+ 3678r2rlr3 + 16390rlr2r3 + 4296rr  2 + 496r3r4 + 5280rlr4 

+ 7048rr2r4 + 1650r~ + 3760rrlr5 + 2838r3 + r5 + 553r2r6 

+ 1771r2r6 + 748rlr7 + 174rr8 + 1 lr~0. 

The no ta t ion  ri is used here to denote  the i-th derivative r (i) o f  r. 

In  some cases the third order  differential equat ion  satisfied by f leads to a 
more  or  less explicit expression f o r f  valid for every p. 

4 . 2 .  F a c t o r i n g  0 2 - r in c h a r a c t e r i s t i c  p 

A fac tor iza t ion  o f  0 2 - -  r in monic  order  1 opera tors  always has the form 
02 - r = (0 + u)(O - u). In  the fol lowing we allow u to be separable algebraic 
over k. 

It is clear that  any u satisfies the Riccat i  equat ion  u '  + u 2 = r. Moreover  the 
element m :=  (0 - u)e satisfies Om = - u m .  Hence  OP(m) = - ( u  (p l) + uP)m 
and therefore m is an e igenvector  o f  ~pp. 

The eigenvalues o f  the ~pp are :t:(¼ ( f , ) 2  + f 2  r _ l f f t l ) l / 2 .  

I f  the de te rminant  o f  the ~p is not  zero then the two solutions for u are 

u -  2 f :[: - 4  - ~  + r  

I f f  ¢ 0 and the de te rminant  is 0 then there is only one solut ion u = 1 ( f , / f ) .  
M o r e o v e r f  1/2 satisfies y(2) = ry. 

I f  f = 0 then the fo rmula  does not  make  sense. But of  course  02 - r still 

factors,  since the equat ion  y "  = ry has a full set o f  solutions in k. There  are in- 
finitely m a n y  solutions for u in k. 
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We conclude that 02 - r  always factors as ( 0 +  u)(O-u)  over k or over a 
quadratic extension of k. 

I f f  ¢ 0 then the elements u with this property satisfy 

U 2 - T u r + ~  + ~  0. 

We note that for any solution h ¢ 0 of the differential equation h (3)- 
4h(t)r - 2hr (1) = 0 the elements v defined by 

1/2 

satisfies 0 2 - r = (0 + v)(O - v). In some cases one finds in this way a factor- 
ization of  02 r without knowing f .  

4.3. The equation y (2) = ry over Q(z) 

4.3.1. Differential Galois theory and the Riccati equation 

In the following we summarize some results on the differential Galois group 
and Riccati equation for the equation y(2) = ry. 

The Picard-Vessiot theory is well defined over an algebraically closed base 

field. For the equation above we will work over the algebraic closure Q of  Q. 
There is a Picard-Vessiot field K ~ Q(z) for the equation y (2) = ry. The set 

V := { y C K ] Y (2) = ry} is a vector space over Q of dimension 2. The field K is 
generated over Q(z) by V. The group G of the Q(z)-linear automorphisms of  K, 

commuting with the differentiation, acts faithfully on V. In fact G is an alge- 

braic subgroup of  SI(V) = SI(2, Q). The component  of  the neutral element of  

G is denoted by G °. For any y C V with y ¢ 0 the element u = y'/y satisfies the 
Riccati equation u r + u 2 = r and 02 - r = (0 + u)(O - u) holds. Further any 

solution of the Riccati equation has the form y'/y with y c V and y ~ 0. 

Transcendental solutions u of the Riccati equation are of no interest in this 
theory. A solution u of  the Riccati equation is algebraic if and only if u is in- 

variant under G °. The last condition is equivalent to: the line Qy in V is in- 

variant under G °. One has the following possibilities for algebraic solutions u 
of the Riccati equation: 

1. If  G = Sl(2, Q) then there is no algebraic solution u of  the Riccati equa- 
tion. 

2. If  G is reducible and contains the additive group Ga as algebraic subgroup 

then there is precisely one algebraic solution u of  the Riccati equation. More- 
over this u lies in Q(z). 

3. If  G is the multiplicative group G,, then there are two algebraic solutions 
Ul, u2 of the Riccati equation. They lie in L(z) where L is an extension of  Q of 
degree 1 or 2. The polynomial X 2 - ( u l + u 2 ) X + u l u z = X  2 - a X + b  has 

coefficients in Q(z). 
4. If  G is the infinite dihedral group D~ then there are two algebraic solu- 
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tions ul, u2 of the Riccati equation. They lie in a quadratic extension of  Q(z). 
The polynomial  X 2 (ul ÷ tAZ)X" ÷ UlU2 = j r ' 2  __ a J (  ÷ b has coefficients in 

Q(z). 
5. I f  G is a finite group then there are infinitely many  algebraic solutions of  

the Riccati  equation. 
Most of  the statements above are well known from the Kovacic algori thm 

([Ko]). The rationality statements about  the algebraic solutions of  the Riccati 
equation are proved in [HP]. 

4.3.2. Some observations 

We will need more information about  the u,a,b E Q(z). For  any prime p 
one introduces a discrete valuation ordp on Q(z) which extends to usual 
p-adic discrete valuation ordp on Q For elements in Z[z] one defines 

ordp(a0 + alz + . . .  as z~) = ordp(g.c .d . (a0, . . . ,  as)). For arbi t rary (a/b) E Q(z) 
one defines ordp(a/b) = ordp(a) ordp(b). We note that the subring R of Q(z) 
consists of  the elements f with o r d p ( f )  > 0 for all primes p. For f c Q(z); 
f ¢ 0 one defines den(./') to be the smallest integer m >_ 1 with m f  ~ R. 

In connection with case 2 of  4.3.1 we consider a solution u E Q(z) of the 
Riccati equation u '  + u 2 = r. Let p be a pr ime with ordp(u) < 0. Then the 
equation implies that ordp(u) = ½ordp(r). This shows that  den(r) is a square, 
say n 2, and that d e n ( u ) = n .  Moreover,  the equation n(nu) '+ (nu) 2 =  nZr 
proves that the residue o f n 2 r  in R/nR is a square of  an element in R/nR. The 
two conditions above are new necessary conditions (in addition to the ones in 
[Ko]) on r for the existence of  a solution u c Q(z) of  the Riccati equation. 

In connection with the cases 3 and 4 of  4.3.1 we recall f rom [Ko] that the 
1 v polynomial  X 2 - a X  + b is determined by the properties: b = ½ a~+  i a -  r 

and a is a solution of the Riccati equation 

w (2) + 3ww 0) + w 3 - 4 w r -  2r 0) = 0, 

associated to the second symmetric  power 

h (3) 4h0)r 2hr (1) = 0 of  the equat ion ),(2) ry = O. 

From a (2) + 3aa (1) + a 3 - 4ar - 2r (l) = 0 one can easily derive an estimate for 

den(a). I f  the pr ime p > 2 satisfies ordp(a) < 0 then ordp(a) = ½ordp(r). I f  

ord2(a) _< - 2  then ord2(a) = ½ord2(r). I f o r d a ( a )  = - 1  then ord2(r) <_ 4. 
The connection between X 2 aX ÷ b and this second Riccati equation 

holds in a more general context. Let p > 2 and e >_ 1 an integer. On the ring 
R/(pe)[X] one defines a differentiation ' by: on R/peR this is the differentia- 
tion induced by ~ on R and X '  = r - X 2 m o d p  e. The ideal (X 2 - a X + b )  C 
R/(p~)[X] is invariant under differentiation if and only if b - - } a ' +  
½a 2 r m o d p e a n d a ( Z ) + 3 a a O ) + a 3 - 4 a r  2rO) z O m o d p  e. 

As in the Kovacic algori thm one tries to solve y(2) = ry by producing alge- 
braic solutions of  the Riccati equation. Unlike the Kovacic algori thm we do 
this by trying to lift solutions modulo  pr imes to characteristic 0. This method 
will only produce algebraic solutions of  the Riccati equation of degree 1 or 2 
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over Q(z) since the solutions that  we find o f  the reduced equat ion  
u '  + u 2 = r m o d p  are o f  degree 1 or  2 over Fp(z). 

On the other  hand  a solut ion u E Q(z) of  the Riccat i  equat ion  satisfies 
ordp(u) > 0 i f o rdp ( r )  > 0. Hence  u m o d p  e is a solut ion o f u '  + u 2 = r m o d p  e. 
In the case o f  algebraic solutions o f  degree 2 over Q(z), the ideal (X 2 - aX + b) 
considered above reduces modu lo  p e (where p > 2 and ordp(r)  _> 0) to an ideal 

o f  R/(pe)[X] which is invariant  under  differentiation. The  two solut ions of  
X 2 - a X  + b - 0 in Rip ~ or in a quadrat ic  extension o f  Rip  e are solutions 
modu lo  p ~ o f  the Riccat i  equat ion  u r + u 2 - r m o d p  e. 

4.3.3. Procedure 

(1) One tries to find a small pr ime p with p > 2 and ordp(r)  _> 0 such that  

p -curva ture  of  the reduced equa t ion  is not  zero. This can be done  by a direct  
calculat ion of  the t e r m f  o f  4.1. Ano t he r  way  is to consider  the Fp(zp) l inear 
ope ra to r  Lp : Fp(z) ~ Fp(z), given by Lp(y) =-y(2) _ ry m o d p .  The p-curva-  

ture is 0 if and only if the d imens ion  of  the kernel o f  Lp is two. 

I f  this is not  successful then one conjectures  that  the differential Galois  g roup  
G is finite. A n o t h e r  a lgor i thm,  a long the lines o f  [BD], should be developed to 

deal with y(2) = ry under  the a s sumpt ion  that  the differential Galois  g roup  is 
finite. 

(2) Suppose  that  a p r i m e p  is found  with non-ze rop-cu rva tu re .  Let M denote  

the differential module  over Fp(z) cor respond ing  to the reduced equation.  By 

cons t ruc t ion ,  the second exterieur power  AZM is a trivial differential module.  
This leads to the fol lowing possibilities for the classification o f  M.  

1. M ~ l ( t  2) and the d imension  of  ker(Lp) is 1. 

2. m ~- I( t  c~) 0 I( t  + c~) with c~ E Fp(zP) *, In  this case ker(Lp) = 0. 
3. M ~- l ( t  2 - / 3 )  with/3 E Fp(zp) and fl not  a square. Aga in  ker(Lp) = 0. 

(3) I f  M ~_ I ( t  2) then one makes  the guess that  the differential Galois  G is 

reducible and conta ins  Ga. First  one verifies the necessary  condi t ions  for the 
existence o f  a solut ion u E Q(z) of  the Riccat i  equation.  Let den(r) = n 2 then 

nuE  R has the fo rm n u = A / B  where A, B E  ZIz]; B primitive and 
g.c.d.(A, B) = 1. Let f E Fp(z) be a non  zero solut ion o f y  (2) = ry m o d  p. Then  

f ' / f  is the only solut ion o f  the Riccat i  equat ion  m o d p .  We want  to lift 

n ( f ' / f )  = (a/b) E R/pR,  with a,b E Fp[z]; b monic  and g.c.d.(a,b) = 1, to a 
suitable element  (A/B)  E R. One can calculate the finitely many  possibilities 
for A, B E Z[z] such that: 

• The  coefficients o f  A and B are in { - ( p  - 1 ) / 2 , . . . ,  (p  - 1)/2) .  
• B is primitive. 

• A - c a a n d B - c b m o d p f o r s o m e c E F *  p .  

I f  for some v0 = A / B  the element vo/n satisfies the Riccat i  equat ion  then we are 

done. I f  not  then we try to refine v0. The refinement vo + p w  should  satisfy 
n(vo +pw) '  + (vo ÷ p w )  2 z nZr m o d  p 2 .  This leads to the equat ion  nw' + 2v0 w - 
( n 2 r -  nv6 - vZ)/p m o d  p. The Fp(zP)-linear m a p  w ~ nw' + 2vow on the vec- 

tor space Fp(z) has a kernel o f  d imens ion  1. Hence  the equat ion  may  not  have a 
solut ion w. In  that  case we conclude  that  u ~ + u 2 = r has no  solut ion in Q(z). 
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I f  there is a solution w then we choose one and find a lift vl c R (similarly to 
the construction as above) which gives a candidate v l /n  E Q(z) for the Riccati 

equation. One can continue this process. 

(4) We suppose now that kerLp = 0. The second symmetric power of the 
module M is isomorphic to N • I ( t )  where N is either I ( t  - 2c~) ® I ( t  + 2c~) 
or I ( t  2 - 4 ~ ) .  Let f be a non zero solution of  the operator Sym2Lp = 

03 - 4rO - 2r (11 acting on Fp(z). Since f is unique up to multiplication by an 

element in Fp(zP)* one finds a unique solution ao : = f J f  on the second Riccati 
equation a (2) + 3aa 0) + a 3 - 4ar - 2r0) _= 0 mod p. We will show now that a0 
has a unique lift ae E R / p e R  which satisfies a (2) ÷ 3aa (l) + a 3 - 4ar - 2r Oi - 0 

mod pC. Let the existence and uniqueness ofae  already be shown. Let ae denote 

any lift ofae to R / p e + l R .  Then ae+l = ae + p e w  for some w C R / p R .  The con- 

dition that ae+l satisfies the second Riccati equation mod pe+l  leads to the 
following differential equation for w: 

-(a~ (2) + 3ae~' + ~3 _ 4{ter 2r ')  
w (2t + 3aow' + (3a; + 3ao 2 - 4r)w = pe 

The homogeneous differential equation w (2) + 3aow' + (3a~ + 3a02 - 4r )w  = 0 

is the differential equation corresponding to the module N defined above. The 
kernel of 0 on N is 0 and one concludes that the Fp(zP)-linear operator 

02 + 3aoO+ (3a; + 3a 2 -  4 r ) :  Fp(z) ~ Fp(z) 

is bijective. This proves the existence and uniqueness of ae+j. 
Suppose that ae is calculated. Let m be an estimate for den(a). Then mae E 

R / p e R  can be lifted to R by the method described in (3) or with LLL-reduction. 

This may lead to a solution a E R of the second Riccati equation. 

(5) If  the prime p of  (1) does not lead to a solution of  the Riccati equation 
then one can try to find another prime q with non zero q-curvature. For q one 

proceeds as before and one combines the results for p and q to obtain solutions 
modulo p nq m of the Riccati equation. 

Remarks. There are two main difficulties that can occur in the search above. 

The first one would be that for the considered primes the p-curvature 0. In that 
case one expects that the differential equation y (2) = ry has only algebraic so- 

lutions (or equivalently G is finite). 
A theoretical complication is that Grothendieck's conjecture for order two 

equations is not completely proved. The missing case is to show that for an 

equation with differential Galois group S/(2) there are infinitely many primes p 

with non zero curvature. 
The other difficulty would be that a fair number of different primes p with 

~hp # 0 do not lead to a solution u o f u '  + u 2 = r. This could mean either that u 

does not exist (and so G = S/(2)) or that u exists but is a rather complicated 

expression in terms of degrees and height of the coefficients occurring in u. 
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5. EXAMPLES 

5.1. y(2) _ (C/Z4)y 

Here  c deno tes  a non  zero  r a t i ona l  number .  F o r  a p r i m e  p which  does  no t  

d iv ide  the  d e n o m i n a t o r  and  the n u m e r a t o r  o f  c one can expl ic i t ly  ca lcu la te  ~p. 

W i t h  the  n o t a t i o n s  of  4.1 one can see tha t  f is a p o l y n o m i a l  in z-I with  h ighes t  

t e rm c(P-I)/2z-2p+2. Using  tha t  f a lso  satisfies the  different ia l  equa t ion  

f(3) _ 4 f  (1)r - 2 f r  (1) = 0 one  f inds t h a t f  = c ( p -  I)/2z-ZP+2. T h e n f l / f  = 2 / z  is 

a m o d u l o  p so lu t ion  o f  the  second  R icca t i  equa t ion .  One  verif ies tha t  2 / z  is an 

ac tua l  so lu t ion .  The  p o l y n o m i a l  X 2 - a X  + b is then  known,  a = 2 / z  and  b = 

½ a t ÷  ½a 2 --r z - 2 - - c z  -4. The  two  so lu t ions  o f  the  R icca t i  equa t ion  
u '  + u 2 = r are  therefore  z -1 4- x/~z 2. 

The  different ia l  G a l o i s  g r o u p  o f  the e q u a t i o n  mus t  be Gm since a finite cyclic 

different ia l  G a l o i s  g roup  wou ld  imp ly  tha t  a l m o s t  all p - c u r v a t u r e s  are  0. 

5.2. y 121 : ( ~  z-5 + z) y 

F o r  the p r ime  p : 3 one f inds by 4.1 t h a t f  : r = - z  -2  + z a n d f l / f  : z -1 is 

a so lu t ion  m o d u l o  3 o f  the  s econd  R icca t i  equa t ion .  One  can  refine this  to the 

so lu t ion  z -1 + 3z -1 -- 4z -1 m o d u l o  9 o f  the s econd  R ic c a t i  equa t ion .  

A poss ib le  so lu t ion  a E Q ( z )  o f  the second  R icca t i  equa t ion  has  o rd2 (a )  > 

- 2  a n d  o r d p ( a )  >_ 0 for  all  p > 2. H e n c e  4a  c R. N o w  4a  ~ 16z - l  ___ - 2 z  - l  

m o d  9, l eads  to the choice  a = - ½ z  - l .  This  is an  ac tua l  so lu t ion  o f  the second  

Ricca t i  equa t ion .  The  t e rm b = l a '  + l a 2  - r = 1 /16z  2 - z and  the two solu- 

t ions  o f  u '  + u 2 = r are  - I z - l  4- z 1/2. The  different ia l  G a l o i s  g roup  is D ~ .  We 

no te  tha t  the e q u a t i o n  is in fact  one  of  the rare  examples  o f  an  equa t ion  with  

two s ingu la r  po in t s  and  different ia l  G a l o i s  g r o u p  Do~. 

5.3. y(2) = (24 / ( z  2 _ l ) 2 ) y  

C lea r ly  ~b2 and  ~'3 are  0. F o r  the  p r i m e  p = 5 the c o r r e s p o n d i n g  f is equal  to 

- (z  2 _ 1)-4 and  the d e t e r m i n a n t  o f  the  m a t r i x  o f  % is 0. Th is  leads  to  a un ique  

so lu t ion  u5 : z / ( z  2 - 1). The  lift  o f  u5 to Q ( z )  has  the  same fo rm a n d  does  

no t  sat isfy the equa t ion .  H o w e v e r  z / ( z  2 -  l )  satisfies the  R icca t i  equa t ion  

m o d u l o  5 z. A re f inement  o f  this  so lu t ion  to a so lu t ion  m o d u l o  53 o f  the fo rm 

z / ( z  2 - 1) + 25w does  no t  work!  Le t  us t ry  never the less  z / ( z  2 - l)  + 5w as  a 

so lu t ion  m o d u l o  5 3. This  leads  to the equa t ion  

2z 5 5 2  . 
w' + z ~ - _  1 w +  5w - - - (  z2 _ 1) 2 m o d u l o  

Then  w + ( 2 z / ( z  2 - 1))w = 0 m o d u l o  5. This  impl ies  tha t  w = e / ( z  2 - 1) where  

c is a ' cons tan t ' .  One  finds at  once  tha t  c = 1. Th is  m o d u l o  53-so lu t ion  

(z + 5 ) / ( z  2 - 1) for  the R icca t i  equa t ion  tu rns  ou t  to be  a so lu t ion  in Q ( z ) .  We 

have thus  found  a f a c to r i z a t i on  02 - 2 4 / ( z  2 -  1) 2 = (0 + u ) ( O -  u) with  u = 

(z + 5 ) / ( z  2 _ 1). A fu r the r  i n spec t ion  l ea rns  tha t  y '  = u y  has  the  so lu t ion  Yl :=  

(z 2 - 1)-2(z - 1) 5. F ina l ly  by  v a r i a t i o n  o f  cons t an t s  one  f inds a second  so lu t ion  
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in Y2 : :  ( 22 - l) 2(524 T 1022 + 1) C Q(z) o f y  (2) = 24/(z 2 - 1) 2. This means 

that the equation is trivial. For any prime p ¢ 5 the reductions of  yl and ye 
mod  p are linearly independent over Fp(zP). Hence ~bp = 0 for p ¢ 5. The re- 
ductions of  Y l and Y2 mod  5 are linearly dependent over Fs(z 5). This explains 
why ~5 ¢ O. 

5.4. The Airy equation 

This is the equation y(2) = zy. It is well known that the differential Galois 

group G of  this equation is Sl(2). We want to show that this can be found by 
using the information from the p-curvature  for every p > 2. With the notat ion 
of  4.1, one sees t h a t f  is a polynomial  with highest term z (p-  J)/2. Using t h a t f  is 
a solution of the differential equation 

f(3) 4 f (1 ) r - -  2f r  (1) : 0, 

one obtains the following expression for f :  

z( p 1)/2 + alz (  p -  1)/2-3 + a2z( p 1)/2-6 @ a3z( p -  1)/2 9 ~_ . . .  , 

where the ai can be found by linear algebra. For p = 3, 5, 7, 11, 13, 17, 19 one 
finds t h a t f  is equal to: 

z;z2;z 5 + 6 z 2 ; z  6 + 3 z  3 - 4 ; z  8 + 6 z  5 + 2 z 2 ; z  9 - 4 z  6 + z  3 + 3 .  

The first conclusion is that G cannot  be a finite group. The determinant  of  ~bp is 
a polynomial  of  degree p with highest term - z  p. This is not a square in Fp2 (z) 
and the equation u ' +  u 2 - r  m o d p  has no solutions in Fp2(z). Therefore G 
cannot  be reducible group containing Ga nor can it be Gm. The only possibi- 
lities for G are now S/(2) and the infinite imprimitive subgroup D~.  We still 
have to exclude the latter possibility. 

I f  G - D ~  then algebraic solution u of  the Riccati equation are the zeroes of  
a certain polynomial  X 2 - a X  + b. The element a lies in R and for every p > 2 
the reduction mod  p of  a is equal to f~ / j i  From the differential equation for f 

one sees that f and f '  have no c o m m o n  factor. The degree o f f  is (p 1)/2. 
This shows that a does not exist. We conclude that the differential Galois group 
of the Airy equation is S/(2). 

6. HIGHER ORDER EQUATIONS 

6.1. Factoring in characterist ic  p > 0 

Suppose that the field k has the property [k : k p] = p. Let z c k satisfy k = 
kP[z] and let the differentiat ion '  be given by z '  = 1. The fields F(z)  and F((z)) ,  

where F is a finite field or the algebraic closure of  Fp, will be called specialfields. 
For those fields one can write algorithms. 

The differential opera tor  L, that  we want to factor, is supposed to be monic 
and to have degree n. Theooperator  L induces a differential module N := 
k[O]/k[O]L of dimension n over k. Let e denote the image of 1 E k[O] in N. Then 
e, O e , . . . , O  ~ le is a basis of  N. 
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The monic left hand factors of degree d of L are in a one-to-one correspon- 
dence with the submodules M of dimension d over k of N. Indeed, for a sub- 
module M there is a minimal monic operator L2 of degree n -  d such that 

Lze E M. Then L = LI L2 holds for some monic L1 of degree d. On the other 
hand, a factorization L = LIL2 with Ll, L2 monic of  degrees d and n d gives 
rise to the submodule M with basis L2e, OL2e,..., 0 a- lL2e. 

The classification (see 2.1) applied to N gives in principle the possible sub- 

modules M of N and all the factorizations of L. We have to see how this can be 
done in an algorithmic way. 

6.1.1. Calculation of zpp and its characteristic polynomial G( T) 

The matrix of the k-linear operator .~p with respect to the basis e, 0 e , . . . ,  
0 n le can be calculated as follows. Using the Euclidean division in k[O] one 
finds expressions 0 p+i = AlL + Bi for i = 0 , . . . ,  n - 1 with degree(B/) < n. The 
Boe,. . . ,  Bn_ le are the columns of the matrix of ~)p. Indeed, z)pOie = OP+ie  = 

(AiL+ B i ) e -  Bie. In principle the characteristic polynomial G(T) of ~p is 
computable. 

An alternative way would be to calculate the characteristic polynomial F(T) 
of 0 seen as a kP-linear map on N. Using G(T) = F(T l/p) one finds G(T). This 
shows moreover that F(T) ¢ kP[T p] and we have to compute only n + 1 coeffi- 
cients in k p. 

6.1.2. Factoring G(T) 

If  the factorization G(T) = F( ~1 ... F~ • is known then one can explicitly find 

the decomposition N = I~)~= 1 Ni .  A certain factorization of L is a consequence 
of  this. 

For specialfields k it seems possible to factor polynomials over k. I f  k = F(z) 
then we have to consider in fact factorizations of polynomials over F[z]. This is 
done by factorizations over F[z]/m for various maximal ideals m. 

I f  k = F((z)) then one uses Newton polygons and Newton approximation to 
find a factorization over F((z)). 

The special case where one wants to find linear factors (or zeroes in k p) of 
G(T) is rather easy. For k = F(z) one writes G(T) as 

anl(anT n +. - .  + al T + ao), 

where ao,.. . ,  an C F[zP 1 have g.c.d. 1. The zeroes of  G(T) in k p have the form 
a/b where a is a divisor of a0 and where b is a monic divisor of an. 

For k = F((z)) the Newton polygon of G(T) determines the valuations of the 

possible zeroes of  G(T) in k p. By Newton approximation one can calculate a 
zero in k p up to any order. 

6.1.3. Left hand factors of degree 1 

We are looking for the possible factorizations 
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L = (0 4- u)(O n -  1 4- a n _ 2 O n - 2  4 - . . .  4- ao). 

The vector  m := aoe + al Oe 4- . . . +an 2 4- On l e ¢  N has the p roper ty  Om = 

- u m .  F r o m  Om = - u m  one can deduce that  ~ p m  = - ( u  (p-  1) + uP)m.  The ele- 

men t  (u(p 1) + u p) lies in k p. Therefore  m is an e igenvector  o f  ~bp corre-  

sponding  to an eigenvalue o f  ~p belonging to k p. 

On the other  hand  suppose that  we have found an eigenvector  m = aoe 4- 

al 0e + . . .  + an 2 + 0 n -  le o f  ~bp co r respond ing  to an eigenvalue A C k p of  ~p. 
Since ~bp and 0 c o m m u t e  and A ~ = 0 one finds tha t  ~p(Om) = AOm. I f  the kernel 
M of  ~bp - A on N has d imens ion  one over k then O m =  um for some u ¢ k and 

we found a left hand  fac tor  o f  degree 1. 
I f  the kernel M of  ~bp - A has d imens ion  greater  than 1 then accord ing  to the 

classification N conta ins  at least a direct  sum I ( F  a) ® I ( F  b) where F -- 0 p - A. 

It follows that  N conta ins  infinitely m a n y  copies o f  I ( F )  and so L has infinitely 
m a n y  left hand  factors  o f  degree 1. In  this case it seems not  useful to calculate 

one o f  those left hand  factors.  

6.2. Left hand factors of degree one over Q(z) 

The opera to r  L ¢ Q(z)[O] is supposed  to be monic  o f  degree n. The denomi-  

nator  o f  L is defined to be the smallest positive integer m such that  m L  ~ R[0]. 
Suppose that  there is a decompos i t ion  

L = (0 + u)(O n l 4- an_2 On-2  4 - . . .  4- ao), 

with u, a,, 2, • • •, ao E Q(z) .  Let p be a pr ime not  dividing m then we know that  
p does not  divide the denomina to r s  o f  the two terms. Therefore  one finds a de- 

compos i t ion  o f  L m o d  p. In  part icular,  0 + u m o d  p is a left hand  fac tor  o f  
L m o d  p. In the sequel we will suppose for convenience  that  m = 1. 

I f  one is in the lucky si tuat ion that  for every zero A in k p of  the character is t ic  
po lynomia l  o f  the ~bp there is only one eigenvector  then the n u m b e r  o f  possibi- 

lities for u m o d  p is < n. Each  possible u m o d  p can be lifted to an element o f  
R C Q(z)  in the way descr ibed in 4.3. One finds then a n u m b e r  o f  guesses 

Ul, •. •, Us with s _< n for u. Divis ion o f  L by the 0 4- ui may  lead to a factor iza-  
t ion o f  L. 

I f  no  fac tor iza t ion  is found  then one has several possibilities to cont inue  the 
search for u. The first one tries to solve L -- (0 + u)(O" 1 + . . . )  m o d u l o p 2  (or 

modu lo  higher  powers  o f  p). This can be done  as follows: 

Let v0 denote  one o f  the ui. Write L - - ( O + v o ) A  + p f  (division o f  L by 
(0 + v0)) w h e r e f  C R. Let v l ¢  Fp(z)  and B C Fp(z)[O] of  degree less than n - 1. 
Then  we want  to solve 

L :_ (0  4- vo + p v l ) ( A  4- Bp) m o d  p2. 

This amoun t s  to the equat ion  vIA 4- (0 4- vo)B ~ f m o d  p. In making  this ex- 

plicit one finds an inhomogeneous  differential equat ion  K ( v l ) = f  of  order  
n - 1 for vl. The assumpt ion  that  A ¢ k p is a simple zero o f  G ( T )  implies that  
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K(w) = 0 has  no  s o l u t i o n s  w ¢ 0 in k. I t  f o l l ows  t h a t  t he  kP- l i nea r  o p e r a t o r  

K : k --* k is i nve r t ib l e .  L i n e a r  a l g e b r a  o v e r  k p yie lds  t he  u n i q u e  Vl. 

A s e c o n d  p o s s i b i l i t y  is to  t a k e  a n o t h e r  p r i m e  q a n d  use  the  i n f o r m a t i o n  o f  

L m o d  q. T h i s  c a n  give a f in i te  n u m b e r  o f  guesses  fo r  u m o d u l o  pq. 

I t  is n o t  c l ea r  at  t he  m o m e n t  h o w  eff ic ient  the  m e t h o d  a b o v e  wil l  be. 
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