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1. INTRODUCTION

The theme of this note is to use the classification of differential equations in
positive characteristic and the conjectures of A. Grothendieck and N. Katz for
finding symbolic solutions or factorizations of differential operators over Q(z).
The paper of N. Katz [K1] lies at the origin of this note. The main tool is the
p-curvature for differential equations in characteristic p.

For an n x n-matrix 4 with coefficients in @(z) we consider the linear
homogeneous differential equation y’ + Ay = 0.

For almost all primes p (i.e. with finitely many exceptions) one can reduce A4
modulo p, the resulting matrix A has coefficients in the field F,(z). This leads to
the linear homogeneous differential equation y’+ Ay =0 over F,(z). The
p-curvature of this equation is the F,(z)-linear map

! d n r n n
Py 1= (dZ+A) cFo(2)" — Fp(z)".

There is an obvious algorithm for the p-curvature, namely:
Define the sequence of matrices 4(k) by

A1) =4 and A(kH):g:(A(k)HA.A(k), then

¥, = A(p) modulo p.
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The p-curvature of the order one equation y’ = ry can be seen to be i, =
=1 4 r? modulo p.
The importance of the p-curvature is given by the following lemma.

Lemma 1.1. v}, = 0 if and only if 'y’ + Ay = 0 has a fundamental matrix with
coefficients in F,(z).

A finer result on the p-curvature is the following. For the differential equa-
tion y’ + Ay = 0 one can define a differential Galois group. This is an abelian
group scheme of height one over the field F,(z?). The Lie-algebra of this group
scheme is the commutative p-Lie algebra over F,(z”) generated by 1. See [Al,
A 2] and [P].

We will state the two conjectures above in a simplified form.

Grothendieck’s conjecture asserts that the following statements are equivalent.

(1) y'+ Ay = 0 has a fundamental matrix with as coefficients algebraic func-
tions.

(2) For almost all primes p the p-curvature is 0.

The implication (1) = (2) in Grothendieck’s conjecture is easily proved.

Katz’ conjecture concerns the differential Galois group G of the equation
y' + Ay = 0 and its Lie-algebra Lie(G). The statement is: Lie(G) is the smallest
algebraic Lie-algebra in M (n x n, Q) such that Lie(G) ‘contains’ ), for almost all
primes p.

N. Katz has proved Grothendieck’s conjecture in many cases and has shown
that this conjecture is equivalent to the one of Grothendieck.

The difficulty in trying to use the p-curvature for finding symbolic solutions
(or the differential Galois group) of the equation y’ + Ay = 0 is the expression
‘almost all primes p’. For order one equations we will show how one can specify
‘almost all’ by using a method of Rothstein and Trager. (See [L]).

For a differential field & with a derivation written as ’ we denote by k[0] the
skew ring of differential operators. Its structure is given by the formula da =
ad + a’ with a € k. The ultimate goal is to factorize a given differential operator
L over the field Q(z) by computing the factorizations of the reduction L €
F,(z)[0]. We propose here some methods for factoring L and L. A complete
algorithm seems not within reach at the moment. For order two operators L
however, a fairly complete procedure for factoring L is given.

Order two differential equations in positive characteristic have also been
studied in [J, Ks]. An algorithm for order two differential equations in positive
characteristic is developed in [Ho].

I would like to thank Frits Beukers for his helpful comments.
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2. RESULTS ON DIFFERENTIAL EQUATIONS IN CHARACTERISTIC p

In this section we give some proofs and statements which will be used in the
sequel. The differential field & is supposed to have characteristic p > 0. We
suppose that [k : k7] = p and we fix a z € k such that k = k?(z). The differ-
entiation ' of k is defined by z’ = 1. A differential module M over k will be a
finite dimensional vector space over k equiped with a k?-linearmap 9 : M — M
satisfying O(fm) = f'm + fOm (with m € M and f € k). The p-curvature ¢, is
simply the k-linear map 87 on M.

Lemma 2.1. The p-curvature of a differential module M is 0 if and only if M is
trivial, i.e. there is a basis ey, . . . e, of M over k with 9(e;) = 0 for all i.

Proof. If M is the trivial module then obviously the p-curvature is 0. On the
other hand, suppose that 9” is 0 on M. Then 3 is a nilpotent k?-linear operator
on M and has an element e; # 0 in its kernel. By induction the module M /ke,
has a basis e, ..., e, with 9(¢;) = 0. Let ¢; (for i > 1) denote a lift of &; to M.

Then de; = a;e; for some a; € k. Then 97(e;) = al-(”_l)el and so a,.(”_ D=0 1t
follows from af”il) =0 that there exists b; € k with b/ = ¢;. The elements
e, e —byey, ..., en — bye form a basis of M onwhich 01s 0. [

Lemma 2.2, (1) For the one-dimensional module k with e = re one has 97 (e) =
(r=1  rPYe. Further r'?=") 4 r? ¢ k2.
(2) Forr c konehasr'?=Y 1 v? =0 ifand only if r = f'/f for some f € k*.

Proof. (1) Define the map 7 : & — k as follows:

If Je = re then 0%¢ = 7(r)e. As we have seen in the introduction —7(r) is the
constant term in the expression ((d/dz) — r)”. A calculation shows that 7(r) =
r(P=D 4 17 (See [P], Lemma 1.4.2.) The derivative of 7(r) is seen to be 0 and so
T(r) € k?.

(2) According to 2.1, the p-curvature is 0 if and only if there existsan /' € k*
with 9( fe) = 0. The last condition is equivalent to r = —(f'/f). O

2.1. Classification of differential modules over &

We summarize here results from [P]. We will use the notation ¢ = 3”. The
center Z of k[0] turns out to be the polynomial ring k”[¢]. For every monic
irreducible polynomial F € k#[r] and every m > 1 one can define an in-
decomposable differential module I{(F™). If k[3]/(¥) happens to be a skew field
then I(F") is equal to k[3]/(F™). If k[8]/(F) is not a skew field then k[3]/(F) is
isomorphic to M(p x p,Z/(F)) (i.e. the ring of p X p matrices over the field
Z/(F)). In this case k[0)/(F")= M(p x p,Z/(F™)). The module I(F™) is
equal to (Z/(F™))” with the obvious action of M(p x p, Z/(F™)) and therefore
equipped with a left action of k[9).

The set {7{F™)} is the set of all indecomposable differential modules over .
Further any differential module N is a direct sum Y, , I(Fm)“Fm The
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numbers e(F,m) are uniquely determined by N. They can be found by calcu-
lating the dimensions of the k-vector spaces ker(F™(t),), N).

Let N be a differential module over &k of dimension . In order to find the
decomposition of N into indecomposable modules one views the operator
0: N — N as a k?-linear map. Let F(T') denote the characteristic polynomial
of d on N. This polynomial in £7[T] has degree pn. The characteristic poly-
nomial of 97 on N (still considered as a k?-linear map) is easily seen to be
F(T'/P)?. The characteristic polynomial G(T) of 87, considered as a k-linear
map on N, is then F(T /7). We note that G(T) lies in k?[T].

Let G = F/™ --- F™ denote the factorization of G in k?[T] with monic dis-
tinct and irreducible F;. The module N has a unique direct sum decomposition
N = P, N; where the differential module N; has F;™ as characteristic poly-
nomial for its p-curvature.

The further decomposition of N; has the form @, . ,,, <, I(FmeFem | where
the numbers e(F;, m) can be found by calculating the dimensions of the kernels
of the action of F”(1,) acting on N; (or N).

We note that the case where £[0]/(F) (for some monic irreducible F € k?[¢])
is a skew field is rather exceptional. This exceptional case will not concern us in
this paper.

3. EQUATIONS OF ORDER ONE
3.1. Order one homogeneous equations

One considers the equation yp’ =ry with r € Q(z)". Grothendieck’s con-
Jjecture is known to be true in this case. So we know that:

There is an algebraic solution # 0 if and only if for almost all primes p the
p-curvature is zero.

We study a possible proof of this statement and specify the term ‘almost all
primes’. First we have to see how reduction modulo a prime p works for
operators.

A polynomial P € Z|z] is called primitive if the g.c.d. of the coefficients of P
is 1. The ring R denotes the localization of Z|[z] at the set of unit polynomials.
The proper tdeals of R are the nR with n > 1. For any prime p the ring R/pR is
equal to F,(z). The ring R is invariant under the differentiation of Q(z). For
every non zero r € (J(z) there are unique positive integers ¢, # with g.c.d. one
such that r = (¢/n) f with /' € R*. We will call ¢ and » the numerator and the
denominator of r. For a prime p which does not divide the denominator of r we
write r,, or r mod p, for the image of r in F,(z).

We will call an operator L := )", ;8" € R[0] a primitive operator if the ideal
in R generated by the coefficients a; is the unit ideal of R. The product of two
primitive operators is again a primitive operator. Indeed, for every prime p the
skew ring R[J]/(p) is equal to the ring F,(z){0]. The latter ring has no zero
divisors.
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Consider a monic operator L with coefficients in R[1/m], for some positive
integer m. Let a factorization I = L; L, with monic operators L; by given. From
the observations above it follows that L; and L, have their coefficients in
R[1/m]. In particular, for any prime p which does not divide m one finds a fac-
torization L = L, L, in the ring F,(z)[8] by reduction modulo p. The classifi-
cation of differential equations in characteristic p will be used to provide the
possible factorizations of L. An ultimate goal is to find factorizations of L by
combining factorizations L for suitable primes p.

We return now to the first order equation. There is a rational number A with
ArR = R. We normalize r by requiring that » € R*. This does not change the
problem.

Write r = a/b with a,b € Z[z] primitive polynomials with g.c.d.(a,b) = 1.
Necessary conditions for the equation to have algebraic solutions are: b has no
multiple roots and that the degree of a is less than the degree of 5.

We will assume that r = a/b satisfies these conditions.

By assumption the resultant resultant,(b,b’) is not zero. Let the integer M
denote the absolute value of this resultant. We note that the highest coefficient
of bdivides M. Let K denote the splitting field of 4. Then the ramified primes in
K are divisors of M.

We apply a method of Rothstein and Trager to the equation y’ = ry. This
consists of considering the resultant R(x) := resultant,(a - xb’,b) € Z[x]. Let
£2 O Q denote the splitting field of R(x). Let a be a zero of R(x). Then the g.c.d.
(a — ab’,b) is not trivial and hence is divisible by z — 3 where §is a zero of 5. It
follows that a = a(3)/b'(3). Therefore 2 is a subfield of K. Any prime p not
dividing M is therefore unramified in 2. We note further that for any zero 3 of
b, the zero a(3)/b'(3) of R(x) is the local exponent of the equation y’ = ry at 3.
In particular, zeroes of R(x) are the local exponents of the equation.

If the equation y’ = ry has an algebraic solution its differential Galois group
over Qs finite cyclic of order m. Then there is a non trivial solution 1 € Q(z) of
f' = mrf. For any element ¢ in the Galois group of Q/Q the element o(f) is
also a solution of the equation and so o(f) = c(0)f for some c(c) € Q". The
map o+ c(0) is a l-cocycle. By Hilbert 90, the group H'(Galg, @) is trivial.
Hence there is also a solution f € Q(z)* of ' = mrf.

Lemma 3.1. 3’ = ry has a non trivial algebraic solution if and only if 2 = Q.

Proof. Suppose that an algebraic solution # 0 exists. Let m > 1 be minimal
such that there exists a f € Q(z)" with f’ = mrf. Normalize f such that
/€ R* Write f =f""---f™ where fi,...,f; are distinct irreducible unit poly-
nomials in Z[z] and where the n;....,n; € Z\{0}. The minimality of m implies
that the g.c.d. of {n;,...,n}is L.

As a consequence mr =Y _ (n;f//f;) and b = %17 - - - f;. We may suppose that
b=fi--fs. Then

/

, 1 nify mxf/\ (i , A X
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Further R(«) = 0 if and only if the g.c.d.(a — ab’, b) is not 1. The last state-
ment is equivalent to a = n;/m for some i. Therefore all the zeroes of R are
rational.

Suppose that all the zeroes of R(x) are rational. Write Ay, ..., A, for the dis-
tinct zeroes. We note that R(0) # 0. Let f; := g.c.d.(a — A;d’, b) be normalized
such that f; is a primitive polynomial. For i # j one has g.c.d.(f;, f;) = | since
g.c.d.(b’,b) = 1. Hence fi - - - /;| . In order to see the equality (up to a sign) it
suffices to show that any zero 3 € K of bis also a zero of f; - - - f;. By assumption
b'(B8) # 0. Then a — (a(3)/b'(3)) and b have the common zero 3. It follows
that a(3)/b’(3) = A; for some i and that 31is a zero of ;.

Hence f1 --- f; = b. It is easy to see now that r = >, A\;(f//f;). One finds the
algebraic solution y = [, £, of y' = ry. O

Proposition 3.2. Suppose that (2 = Q. Then

(1) The minimal m > 1 such that f' = mrf has a solution f € Q(z)" is a divisor
of M := |resultant,(b’, b)|.

(2) Forp | M the p-curvature, i.e. r'? =Y + rP mod p, is zero.

Proof. (1) The highest coefficient of R(x) € Z[x] is equal to * resultant.(b’, b).
Let Ay,. .., A; denote the zeroes of R(x). Then all MA; € Z. Using the proof of
the last lemma one sees that there is a solution f € Q(z)* of /' = Mrf. This
proves (1).

(2) Let f € Q(z)" with f' = Mrf be normalized such that /' € R*. Then

; £ (r—1) 7 P
(MNP0 4 (M) = M) 47y = (7) i (7)

= 0mod p. O

Proposition 3.3. Suppose that {2 # Q. Suppose that the prime p does not divide
M = |resultant.(b', b)|. Then p is totally split in £2 if and only if the p-curvature of
the equation y' = ry is 0.

Proof. We write @ and b for the reductions of @ and b modulo p. Since p does
not divide the resultant of » and b/, the degree of b is the same as the degree of b
and g.c.d.(b’,h) = 1. Let F(x) := resultant,(a@ — xb’,b). Then F(x) is the re-
duction of R(x) modulo p. Let y1,...,u, € F, be the set of zeroes of F(x). Put
v :=g.c.d.(@— ;b',b). Then we claim thata/b = >, (v} /v).

Indeed, every v, divides b. Further gc.d.(v,v;) =1 if i#j because
g.c.d.(b',b) = 1. Hence v|---v, divides b. Let 3 < F, be a zero of 5. Then
a(3)/b'(3) is a zero of F(x) and so equal to some 4. Then 3is a zero of v;. This
shows that » = v; - - - v,. Further every v; and hence b divides @ — 3, p:(v//v:)b.
The degree of the last expression is less than the degree of b. Therefore the ex-
pressionis 0 and a/b = 3, p;(v//v;). The p-curvature is equal to

6 -5l
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It follows that the p-curvature is zero if and only if all y; € F,. Since F(x) is
the reduction of R{x) modulo p, the condition that all the roots of F(x) are in F,,
1s equivalent to p is totally split in the field 2. O

3.1.1. Examples

(1) r =2z/(z* +1). The resultant of » and &' is 4. The 2-curvature r’+
r?mod 2 is equal to 1/(z2 + 1) # Omod 2. The minimal m such that f’ = mf
has a solution in Q(z)" is m = 2. The p-curvature is 0 for all p # 2.

(2) r =1/(z%> — 2). Then R(x) = —8x? + 1 and 2 = Q(+/2). Then p is split if
p =+lmod 8. The equation y’ =Fy over F,(z) has a solution # 0 since
F={(a1/(z—b1)) + (a2/(z — by)) with a1, a2, b1,b; € F,. Hence the p-curvature
is 0.

If pisinert,i.e.p = £3mod 8, then 7 = (a1 /(z — b)) + (az/(z — b2)) with ay,
ay, b1, by € F,2. The p-curvature is then easily seen to be ((af — a1)/(z — b)) +
((a§ — az)/(z — b2)?). However a; and a; are not in F,, and so the p-curvature is
not zero.

3.2. Symbolic integration

For r € Q(z) one wants to know whether y’ = r has a solution in Q(z). Write
r=(a/b) + ¢, where a, b, ¢ € Q|z] satisfy g.c.d.(a, b) = |, the degree of a is less
than the degree of » and 4 is a primitive polynomial in Z[z]. After multiplying r
with an integer we may assume that a,¢ € Z[z]. The degree m of ¢ and the
highest multiplicity » of the zeroes of b play both a role. Put s = max(2 + m, n).
The square-free decomposition of b has the form & = b b3 ---b? with all b,
primitive polynomials in Z[z} and b := b1 b, - - - b, square-free. Let M denote the
absolute value of the resultant of b and 5’

In order to find an expression for the p-curvature we consider the differential
module over Q(z) with basis e, e, and de; = rey; de; = 0. The element ¢ is a
cyclic element with minimal polynomial 82 — (r'/r)0. The corresponding
equation y” — (r'/r)y’ = 0 is the homogeneous equation associated with y’ = r.
Then d7(e;) = r(#~ Ve, and 82e; = 0. Hence the p-curvature is 0 if and only if
#?=1) = g modulo p. Our problem is to find the relation between solvability of
the equation and p-curvature.

Proposition 3.4. (1) Let y' = r have a solution in Q(z). Then for every prime p
with p /f M and p > s the p-curvature is 0.

(2) Let y’ = r have no solution in Q(z). There are only finitely many primes p
for which the p-curvature is 0.

Proof. Let 7 denote Z[1/M(s — 1)!]. Then r — ¢ = (a/b) = (a/(b1h3 - - - b})) =
(A4/(br---b5~ 1)) — (B/b?) holds with certain 4, B € T[z]. Write B = Cb/ + Db
with C, D € T[z]. Then

B (Cl-s" ’+ C'1—5)""+D

by by~ b~ '

373



In particular we have written r = (E/(bih3--- (bs_1hs) ")) + (F/n~1Y
with E, F € T[z]. After finitely many steps of this type one finds a formula

with G, H € T[z]. Further ¢ has a primitive in 7'[z].

In case (1) the term G is zero and so for all primes p of T we have that the
p-curvature is 0.

In case (2) the term G is not 0. For a prime p of T which does not divide G (i.e.
G is not zero modulo p), the reduction modulo p of the term G/(b1by - - - by) is
not zero and has a simple pole. Therefore (71 is not zero modulo p and the
p-curvatureisnot 0. O

Remark 3.5. In the second case of the proposition it seems difficult to give an a
priori estimate of the exceptional primes in 7', since we do not know G before-
hand.

3.3. The Risch equation

This is the equation y' = ry + s with r, s € Q(z). We suppose that rs # 0 and
we are interested in algebraic solutions of the equation. Suppose that there
exists a solution yp which is algebraic but does not lie in Q(z). Let K be a finite
Galois extension of Q(z) which contains y, and let the Galois group of this
extension be G. Let |G| denote the order of G. Then y, := (1/|G|) >, . ¢ o(»0)
lies in @(z) and is still a solution of the equation. Hence we may as well ask for a
solution y € Q(z).

Let M be the differential module over @(z) generated by ey, 2 and satisfying
Je; = re| + sey; des = 0. Then there is an exact sequence of differential modules

0— Q(z)eg > M —N—0,

where N = Q(z)e; with Oe; = re;. The existence of a solution in Q(z) of
y' = ry + sis equivalent to the splitting of this exact sequence.

Let us for convenience suppose that r,s € R, then the modules have an ob-
vious structure of differential modules over R. In particular one can reduce the
exact sequence modulo any prime p. The images of r and s in F,(z) are denoted
by r, and s,. The existence of a solution in F,(z) of y' =r,y+s, is again
equivalent to the splitting of the exact sequence of the reduced modules.

If the module F,(z)es with des = r,e;3 is not the trivial module, or equiva-
lently if the p-curvature r,g’% Dypr # 0, then the classification of differential
modules over F,(z) asserts that the sequence splits. Hence there is a solution
yp € Fp(z).

If the p-curvature r1£p7 D | yP =0 then a solution ¥p € Fp(z) exists if and
only if the p-curvature of M is 0.

Using this knowledge one can make examples where y' = ry + s has no so-
lution in Q(z) and where there is a solution of y" = r, y + s, for every prime p.
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Suppose that a solution y € Q(z) exists. Then for a prime which does not di-
vide the denominator of y one can reduce y to a solution in y, € F,(z). If p di-
vides the denominator then for some m > 1 the reduction of f of p™y modulo p
exists and is not 0. Then f satisfies the equation f’ = r, f. This means that the
p-curvature r,E”“ R rp of Q(z)es is 0. As we will see any such prime can be a
denominator of y.

The conclusion seems to be that the relation between the Risch equation and
its reductions modulo primes is not obvious at all. This is illustrated by the

following examples.

3.3.1. Examples

(1) The equation y’ = (1/z%)y + 1 has no solution in Q(z). Indeed, a possi-
ble solution y is easily seen to be of the form z?F where F is a polynomial. The
equation becomes z2F’ + (2z — 1) F = 1. Over the field Q one sees that the de-
gree of z°F' + (2z — 1) F is one higher than the degree of F. Hence there is no
solution.

Moreover the p-curvature of Q(z)es is easily seen to be z 727 modulo p for
every prime p. Hence there is a solution y, € F,(z) for every p.

One can make this example more explicit by the substitution of y = z>F
where F denotes a polynomial over F,. One considers the vector space V' of the
polynomials of degree < p — 2. The map F + z2F' 4 (2z — 1) F is injective be-
cause the homogeneous equation has no solution # 0 in F,(z). Thus there is an
F, € V, in fact of degree p — 2, with z2F) + (2z - 1) F, = L.

It is interesting to compare this with the unique formal power series solution
Voo =1 —Z° Y n>o (mn+ 1)1z” of the equation. This divergent power series has as
reduction modulo p the unique solution Vp = z2F,. It seems that the reductions
modulo p have some relation with the Stokes theory of this example.

Another translation of the example above is the following:

The associated second order homogeneous equation is y” — (1/z2)y’ +
(2/z%)y = 0. This equation has only the trivial solution in Q(z). For every p
there is a non trivial solution in F,(z).

(2) The equation y' = (1/(z2=2))y —((z? = 3)/(z? = 2)(z — 3)*) has as
solution (z + 3)/7(z — 3) with 7 in the denominator! In a similar way one can
make for any prime p with p = +1 modulo 8, an example of a rational solution
y of an equation v’ = (1/(z? —2))y + s with s € R and p in the denominator
of y.

3.3.2. More examples
In connection with the first example of 3.3.1, F. Beukers has raised the fol-

lowing question:

Let y' = ay + b be a differential equation over Q(z) such that every singular
point of the equation y’' = ay is regular singular. Suppose that the equation has for
almost all primes p a solution modulo p. Does the equation have a solution in Q(z)?
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One can give the assumption in the question a precise meaning as follows.
The equation is defined over some field K(z) where K is a number field. The
assumption is that for almost every maximal ideal ¢ of the ring of integers of K
the reduction modulo g exists and has a solution F,(z), where F; denotes the
residue field of ¢.

A test-case
One considers the equation

, (a—l—l b+1
y= ]

>y+1 with a,b € Q\ Z.

A solution y € Q(z) of this equation must have the form (z2 — z) F where F is a
polynomial with coefficients in Q. The term

1 b4l
qu:y—(”+ 427 )v

z z—1
is equal to (z2-2)F' +((—a—h)z+a)F. In particular L(z* )=
k—a—b)z"*" + (—k +a)zF. 1t follows that the linear map L : Q[z] — Q[Z]
has 1in its image if and only if @ + b is an integer > 0.

Let K = Q(a,b). For a maximal ideal ¢ of the ring of integers of K, lying
above the rational prime p, we calculate now whether the equation has a solu-
tion ‘modulo p’. We consider only the ¢ such that the equation has a reduction
modulo ¢.

If the homogeneous equation y' = (((¢ + 1)/z) + (b + 1)/(z — 1)) y has only
the trivial solution modulo ¢ then one knows (as before) that the inhomo-
geneous equation does have a solution modulo p. A direct proof is the follow-
ing:

The map y+—y' — (((a+1)/z) + (b+1)/(z = 1)) y from F,(z) into itself is
linear over F,(z#) and has kernel 0. Hence the map is bijective.

The homogeneous equation y’ = (((a + 1)/z) + (b + 1)/(z — 1))y does have
a solution modulo g if and only if the reductions of @ and b modulo ¢ exist and
lie in F,, where g lies above the rational prime p. We suppose now that the
homogeneous equation has a solution modulo ¢.

Let Ny = No(q), N1 = Ni(q), with 0 < N; < p denote the representatives of
a and dbmod ¢q. A solution of the homogeneous equation is then yg =
Motz — )M By variation of constants (i.e. y = yof) one transforms the
inhomogeneous equation into f'=z"M-1(z 1)~ or zr(z - 1)?f' =
zp=No-1(z _ )7~ M1 This is solvable if and only if this polynomial has no
term z? . This condition is equivalent to

No+ Ny > p.

The question of F. Beukers for this special equation translates into:

Suppose that for almost all maximal ideals q of the ring of integers of K =
Q(a, b) with residue field the prime field F,, one has that No(q) + Ni\(q) > p. Is
a + b a non-negative integer?
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Examplea =} and b = 1

For p £ 2,3 one has No(p) = (p+ 1}/2and N1 (p) = (ep + 1)/3withe = 1,2
Thus No(p) + Ni(p) = ((3+ 2e)p+ 5)/6. According to Dirichlet theorem on
primes in an arithmetic progression, there are infinitely many primes p with
p = —1mod 3. For this infinite set of primes e = 1 and Ny{p) + N;(p) < p.

The case where a, b are rational

Puta =ty/ny; b = t1/ny with 1 < ny < nyand g.c.d.(to,ny) = g.c.d.(t1,m) = 1.
By Dirichlet’s theorem we can choose infinitely many N;’s such that
n Ny — 1y = p with p prime. Then N; = N{(p) and No(p) = (ep + to)/ny with
1 <e<ny—1. Clearly No(p)+ N\(p) = ((ng + melp +nito + noty) /non;. Let
Y be the set of primes such that #N,(p) — 7, =p and Ny + N; > p. By as-
sumption ¥ is infinite. This implies that (ny + ni(ng — 1))/mery > 1 and so
ng = ny. Further for almost all pe ¥ we have £ =ny—1 and therefore
(nity + noty)/nony s an integer and > 0. This proves that @ + b is a nonnegative
integer. The conclusion is that Dirichlet’s theorem implies the statement for
a,b € Q\ Z. One can show that Dirichlet’s theorem on primes in an arithmetic
progression is equivalent to the positive answer of the statement for a,b €

o\Z

The case where a or b is not rational

We have not found an example where the question has a negative answer. To
illustrate the question we take a = % and b = i. The primes that we are inter-
ested in are the p with p = I mod 4. For such a prime one has Ny(p) =
(3p + 1)/4. Suppose that the question has a positive answer, Then there are in-
finitely primes p, with p = 1 mod 4 such that the number N; defined by 0 <
N; < (p/2) and N} = ~1mod p satisfies N; < (p/4).

It seems to be unknown whether the last statement is true. The statement is
rather close to the open question, raised by Hardy and Littlewood, whether

there are infinitely many integers x for which x? + 1 is a prime number.

4. HOMOGENEOUS EQUATIONS OF ORDER TWO

We will assume that the differential field has characteristic # 2. Any operator
0? + ad + b can be transformed into 87 — r by applying the shift 8 — 9 — (a/2).
Hence it suffices to study &2 — r and the equation y” = ry.

4.1. The p-curvature of the equation y” = ry

As in Section 2 we suppose that k is a field of characteristic p such that
[k : k7] = p. One fixes a z € k such that k = k?(z). The differentiation ’ of & is
given by z’ = 1. The differential module N corresponding to 8% —r (or to
»" =ry) has basis e, Je and satisfies 9%e = re. Euclidean division in k[d] im-
plies that 97 = 4(82 —~r)+f0+g for certain f,ge€k Then 97*! =
(OA+)B*—7r)+ (f +g)d+ (fr +g'). Hence 87e = ge + fde and 87 (de) =
(fr+g")e+ (f' + g)de. The form of the operator 82 — r implies that the sec-
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ond exterior power A*N of N has a trivial d-action and trivial p-curvature. It
follows that the matrix of the p-curvature of N has trace 0. Thereforeg = —1 1.
The matrix of 87 = 4, on the basis e, de of N reads

(—%f’ Jfr— %f”)
! )

The determinant of 4, is — L (f')* — f2r + 1 ff”. According to 2.1 this term lies
in k7 and its derivative is therefore 0. This leads to the differential equations
fO —4fWr 21U =0 for f. We note that this differential equation is the
second symmetric power of the equation y® = ry.

In general, the term f is some formula in » and its derivatives, depending on
the prime p. The formula can be found by Euclidean division in k[3]. For
p=3,5,7,11,13 one finds the formulas for f:

r; 2 4 3ry; r3+10r12+]3rr2+5r4;
r’ +160r2rf + 70r%ry + 792r2ry + 531r¢2 + 818rr 73 + 33612
+ 16672r4 + 558rars + 3067175 + 91rrs + 9rs;
r® + 38073, + 880r; + 125r%ry + 7172rrry + 2401r%r; + 34653
+ 367872r 73 + 1639071273 + 4296rr32 +49673r4 + 5280774
+ 70487r2r4 + 165077 4 3760rr 75 + 283873 + rs + 553r%r¢
+ 1771rrg + 748r1r7 + 174rrg + 11ry.

The notation ; is used here to denote the i-th derivative r &) of r.
In some cases the third order differential equation satisfied by f leads to a
more or less explicit expression for f valid for every p.

4.2. Factoring 9? — r in characteristic p

A factorization of 8% — r in monic order 1 operators always has the form
8% —r = (3 + u)(9 — u). In the following we allow u to be separable algebraic
over k.

It is clear that any u satisfies the Riccati equation u’ + u? = r. Moreover the
element m := (9 — u)e satisfies Om = —um. Hence 87(m) = —(u? =D + u?)m
and therefore m is an eigenvector of v,.

The eigenvalues of the v, are +(1(f/)* + 1 2r — %ff”)m.

If the determinant of the ¢, is not zero then the two solutions for u are

1y L\ LS 2
() = (F) )

If / # 0 and the determinant is 0 then there is only one solution u = 1 (f'/f).
Moreover f /2 satisfies y @ = ry.

If /=0 then the formula does not make sense. But of course 9% — r still
factors, since the equation y” = ry has a full set of solutions in k. There are in-
finitely many solutions for « in k.
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We conclude that 8 — r always factors as (0 + u)(8 — u) over k or over a
quadratic extension of k.
If f # 0 then the elements « with this property satisfy

2 N
(7)) ()
u' —~—u—r+-| =) +z| =] =0
! 2\f 2\/
We note that for any solution 4 #0 of the differential equation A —
4hWr — 2hr(V = 0 the elements v defined by

1 A 1L/RN? 1 /RN 172
“ﬁi(‘Z(ﬂ "5(7)*’)

satisfies 92 — r = (0 4 v)(0 — v). In some cases one finds in this way a factor-
ization of 8% — r without knowing f.

4.3. The equation y® = ry over Q(z)
4.3.1. Differential Galois theory and the Riccati equation

In the following we summarize some results on the differential Galois group
and Riccati equation for the equation y@ = ry.

The Picard-Vessiot theory is well defined over an algebraically closed base
field. For the equation above we will work over the algebraic closure Q of Q.
There is a Picard-Vessiot field K > Q(z) for the equation y? = ry. The set
V:={y € K|y® =ry} isa vector space over Q of dimension 2. The field X is
generated over Q(z) by V. The group G of the Q(z)-linear automorphisms of X,
commuting with the differentiation, acts faithfully on V. In fact G is an alge-
braic subgroup of SI(V) = S/(2, Q). The component of the neutral element of
G is denoted by G°. For any y € V with p # 0 the element u = y'/y satisfies the
Riccati equation u’ +u? = r and 82 —r = (9 + u)(0 — u) holds. Further any
solution of the Riccati equation has the form y'/y with y € V' and y +#£ 0.
Transcendental solutions u of the Riccati equation are of no interest in this
theory. A solution u of the Riccati equation is algebraic if and only if « is in-
variant under G°. The last condition is equivalent to: the line Qy in V is in-
variant under G°. One has the following possibilities for algebraic solutions u
of the Riccati equation:

1. If G = SI(2, Q) then there is no algebraic solution u of the Riccati equa-
tion.

2. If Gis reducible and contains the additive group G, as algebraic subgroup
then there is precisely one algebraic solution u of the Riccati equation. More-
over this u lies in Q(z).

3. If G is the multiplicative group G,, then there are two algebraic solutions
uy,u of the Riccati equation. They lie in L(z) where L is an extension of Q of
degree 1 or 2. The polynomial X2 — (u; +u)X +wujuy = X2 —aX + b has
coeflicients in Q(z).

4. If G is the infinite dihedral group D, then there are two algebraic solu-
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tions uy, u; of the Riccati equation. They lie in a quadratic extension of Q(z).
The polynomial X2 — (u; +u)X + uju; = X> —aX + b has coefficients in
0(2).

5. If G is a finite group then there are infinitely many algebraic solutions of
the Riccati equation.

Most of the statements above are well known from the Kovacic algorithm
([Ko]). The rationality statements about the algebraic solutions of the Riccati
equation are proved in {HP].

4.3.2. Some observations

We will need more information about the u,a,b € Q(z). For any prime p
one introduces a discrete valuation ord, on Q(z) which extends to usual
p-adic discrete valuation ord, on Q. For elements in Z{z] one defines
ord,(ay +az + ---a,z*) = ord p(g.c.d.(ap, . . ., a,)). For arbitrary (a/b) € Q(z)
one defines ord ,(a/b) = ord ,(a) — ord ,(b). We note that the subring R of Q(z)
consists of the elements f with ord,(f) > 0 for all primes p. For f € Q(z);
| # 0 one defines den( /') to be the smallest integer m > 1 with mf € R.

In connection with case 2 of 4.3.1 we consider a solution u € Q(z) of the
Riccati equation u’ +u? =r. Let p be a prime with ord,(u) < 0. Then the
equation implies that ord ,(u) = Jord ,(r). This shows that den(r) is a square,
say n2, and that den(u) =n. Moreover, the equation n(nu)’ + (nu)* = n%r
proves that the residue of n?r in R/nR is a square of an element in R/nR. The
two conditions above are new necessary conditions (in addition to the ones in
[Ko]) on r for the existence of a solution u € Q(z) of the Riccati equation.

In connection with the cases 3 and 4 of 4.3.1 we recall from [Ko] that the
polynomial X? — aX + b is determined by the properties: &= Ja’+ Sa* —r
and a is a solution of the Riccati equation

w4 3ww wd —dwr — 2,V =0,
associated to the second symmetric power
A —ahMy — 2k =0 of the equation y® —ry=0.

From a® + 3aa" + a® — 4ar — 2r) = 0 one can easily derive an estimate for
den(a). If the prime p > 2 satisfies ord ,(a) < 0 then ord,(a) = Lord,(r). If
ords(a) < —2 then ordz(a) = ord,(r). If ord,(a) = —1 then ord»(r) < —4.

The connection between X2 —aX + b and this second Riccati equation
holds in a more general context. Let p > 2 and e > 1 an integer. On the ring
R/(p®)[X] one defines a differentiation ' by: on R/p®R this is the differentia-
tion induced by ' on R and X’ =r — X?>mod p¢. The ideal (X2 —aX +b) C
R/(p9)[X] is invariant under differentiation if and only if b= la'+
1a? —rmod p¢and a® +3aa'V +a® — 4ar — 2rV = Omod p©.

As in the Kovacic algorithm one tries to solve y¥) = ry by producing alge-
braic solutions of the Riccati equation. Unlike the Kovacic algorithm we do
this by trying to lift solutions modulo primes to characteristic 0. This method
will only produce algebraic solutions of the Riccati equation of degree 1 or 2
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over Q(z) since the solutions that we find of the reduced equation
u’ +u® =r mod p are of degree 1 or 2 over F,(z).

On the other hand a solution u € Q(z) of the Riccati equation satisfies
ord ,(u) > 0if ord ,(r) > 0. Hence umod p° is a solution of u’ + u? = r mod p°.
In the case of algebraic solutions of degree 2 over Q(z), the ideal (X% — aX + b)
considered above reduces modulo p¢ (where p > 2 and ord ,(r) > 0) to an ideal
of R/(p¢)[X] which is invariant under differentiation. The two solutions of
X?—aX+b=0in R/p¢ or in a quadratic extension of R/p¢ are solutions
modulo p¢ of the Riccati equation 1’ + 2 = r mod p¢.

4.3.3. Procedure

(1) One tries to find a small prime p with p > 2 and ord ,(r) > 0 such that
p-curvature of the reduced equation is not zero. This can be done by a direct
calculation of the term /" of 4.1. Another way is to consider the F,(z”) linear
operator L, : F,(z) — F,(z), given by L,(y) =y — rymod p. The p-curva-
ture is 0 if and only if the dimension of the kernel of L, is two.

If this is not successful then one conjectures that the differential Galois group
G is finite. Another algorithm, along the lines of [BD], should be developed to
deal with @ = ry under the assumption that the differential Galois group is
finite.

(2) Suppose that a prime p is found with non-zero p-curvature. Let M denote
the differential module over F,(z) corresponding to the reduced equation. By
construction, the second exterieur power A*M is a trivial differential module.
This leads to the following possibilities for the classification of M.

1. M = I(1?) and the dimension of ker(L,) is 1.

2. M2 I(t—a)®I(t+ a) with a € Fy(z?)". In this case ker(L,) = 0.

3. M = [(t* — 3) with 3 € F,(z”) and S not a square. Again ker(L,) = 0.

(3) If M =~ I(#?) then one makes the guess that the differential Galois G is
reducible and contains G,. First one verifies the necessary conditions for the
existence of a solution u € Q(z) of the Riccati equation. Let den(r) = n? then
nu€ R has the form nu= A/B where A4,Be€ Z[z]; B primitive and
g.c.d.(4,B) = 1. Let f € F,(z) be a non zero solution of y‘¥ = ry mod p. Then
f'/f is the only solution of the Riccati equation mod p. We want to lift
n(f'/f) = (a/b) € R/pR, with a,b € F,[z]; b monic and g.c.d.(a,h) =1, to a
suitable element (4/B) € R. One can calculate the finitely many possibilities
for A, B € Z|z] such that:

o The coefficients of 4 and Barein {—(p —1)/2,...,(p - 1)/2}.

e Bis primitive.

® A =caand B= chmod p for some c € F.

If for some vy = A4 /B the element v,/ satisfies the Riccati equation then we are
done. If not then we try to refine vy. The refinement vy + pw should satisfy
n(vo+ pw) + (vo + pw)? = n?r mod p2. This leads to the equation nw’ +2vyw =
(n*r — nv{ — v%)/p mod p. The F,(z?)-linear map w ~ nw’ + 2vyw on the vec-
tor space F,(z) has a kernel of dimension 1. Hence the equation may not have a
solution w. In that case we conclude that u’ + u? = r has no solution in Q(z).
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If there is a solution w then we choose one and find a lift v; € R (similarly to
the construction as above) which gives a candidate v;/n € Q(z) for the Riccati
equation. One can continue this process.

(4) We suppose now that ker L, = 0. The second symmetric power of the
module M is isomorphic to N & I(r) where N is either I(t — 2a) @ I(t + 2a)
or I(t? —43). Let f be a non zero solution of the operator Sym?’L, =
3% — 4r0 — 2rV acting on F,(z). Since f is unique up to multiplication by an
element in F,(z?)" one finds a unique solution 4y := f'/f on the second Riccati
equation a® + 3aa‘V 4+ a3 — 4ar — 2r(V) = 0 mod p. We will show now that ag
has a unique lift a, € R/p¢R which satisfies a® + 3aal) + a® — 4ar - 2r1) =0
mod p°. Let the existence and uniqueness of a, already be shown. Let 4, denote
any lift of @, to R/p**!'R. Then a, . = d, + p°w for some w € R/pR. The con-
dition that a,, | satisfies the second Riccati equation mod p¢*!' leads to the
following differential equation for w:

—@® +3a.a +a — 4d.r —2r')

w? 1 3agw’ 4 (3ag + 3ad — 4r)w = -
4

The homogeneous differential equation w® + 3agw’ + (3a) + 3ad —4r)w =0
is the differential equation corresponding to the module N defined above. The
kernel of 9 on N is 0 and one concludes that the F,(z”)-linear operator

0% +3ay0+ (3ag + 3ai — 4r) : Fy(z) — Fy(2)

is bijective. This proves the existence and uniqueness of a, ;.

Suppose that a, is calculated. Let m be an estimate for den{a). Then ma, €
R/p°R can be lifted to R by the method described in (3) or with LLL-reduction.
This may lead to a solution a € R of the second Riccati equation.

(5) If the prime p of (1) does not lead to a solution of the Riccati equation
then one can try to find another prime ¢ with non zero g-curvature. For g one
proceeds as before and one combines the results for p and g to obtain solutions
modulo p"g™ of the Riccati equation.

Remarks. There are two main difficulties that can occur in the search above.
The first one would be that for the considered primes the p-curvature 0. In that
case one expects that the differential equation y® = ry has only algebraic so-
lutions (or equivalently G is finite).

A theoretical complication is that Grothendieck’s conjecture for order two
equations is not completely proved. The missing case is to show that for an
equation with differential Galois group S/(2) there are infinitely many primes p
with non zero curvature.

The other difficulty would be that a fair number of different primes p with
¥, # 0 do not lead to a solution u of u’ + u? = r. This could mean either that u
does not exist (and so G = S/(2)) or that u exists but is a rather complicated
expression in terms of degrees and height of the coefficients occurring in w.
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5. EXAMPLES

5.0. y P = (¢/zY)y

Here ¢ denotes a non zero rational number. For a prime p which does not
divide the denominator and the numerator of ¢ one can explicitly calculate /.
With the notations of 4.1 one can see that f is a polynomial in z ! with highest
term c(P=1/2z-27+2 Using that f also satisfies the differential equation
O —4fWpr — 21 = 0 onefinds that f = ¢(#~1/2z727+2 Then f'/f = 2/zis
a modulo p solution of the second Riccati equation. One verifies that 2/z is an
actual solution. The polynomial X? — aX + b is then known, a = 2/z and b =
ta'+3a’—r=z"2—cz™* The two solutions of the Riccati equation
u' 4+ u® = r are therefore z 7! + \/cz 2.

The differential Galois group of the equation must be G, since a finite cyclic
differential Galois group would imply that almost all p-curvatures are 0.

52. y¥ = (22 +2)y

For the prime p = 3 one findsby 4.1that f =r= ~z 2+ zand f/f =z}

a solution modulo 3 of the second Riccati equation. One can refine this to the
solution z~! 4+ 3z~! = 427! modulo 9 of the second Riccati equation.

A possible solution a € Q(z) of the second Riccati equation has ord»(a) >
—2 and ord(a) > 0 for all p > 2. Hence 4a € R. Now da=16z"! = —2z71
mod 9, leads to the choice a = 2z Th1s is an actual solution of the second
Riccati equdtlon The term b = $a’ + Ja? — r = 1/162% — z and the two solu-
tions of u' + u? = rare —1z7' £ 212, The differential Galois group is D,. We
note that the equation is in fact one of the rare examples of an equation with
two singular points and differential Galois group D.

53. y@ =(24/(z2 - 1)")y

Clearly ¢ and 5 are 0. For the prime p = 5 the corresponding f is equal to

—(22 — 1)"* and the determinant of the matrix of s is 0. This leads to a unique
solution us = z/(z% ~ 1). The lift of us to @(z) has the same form and does
not satisfy the equation. However z/(z? — 1) satisfies the Riccati equation
modulo 52. A refinement of this solution to a solution modulo 53 of the form
z/(z% — 1) + 25w does not work! Let us try nevertheless z/(z> — 1) + 5w as a
solution modulo 5°. This leads to the equation

modulo 52.

w' + 2z w+ Sw=

z2 -1 T (22— 1)
Thenw + (2z/(z* — 1))w = 0 modulo 5. This implies that w = ¢/(z? — 1) where
¢ is a ‘constant. One finds at once that ¢ = 1. This modulo 53-solution
(z +5)/(z* — 1) for the Riccati equation turns out to be a solution in Q(z). We
have thus found a factorization 92 —24/(z% — 1)* = (8 + u)(0 — u) with u =
(z +5)/(z? — 1). A further inspection learns that y’ = uy has the solution y; :=
(z2 = 1)"*(z — 1)°. Finally by variation of constants one finds a second solution
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in yy = (22 — 1) 2(5z4 + 1022 + 1) € Q(z) of y@ =24/(z% — 1)%. This means
that the equation is trivial. For any prime p # 5 the reductions of y; and y;
mod p are linearly independent over F,(z”). Hence ¢, = 0 for p # 5. The re-
ductions of y; and y, mod 5 are linearly dependent over Fs(z°). This explains

why 5 # 0.

5.4. The Airy equation

This is the equation y® = zy. It is well known that the differential Galois
group G of this equation is S/(2). We want to show that this can be found by
using the information from the p-curvature for every p > 2. With the notation
of 4.1, one sees that f is a polynomial with highest term z(?~1)/2, Using that f is
a solution of the differential equation

O _4rWr 240 =9,
one obtains the following expression for f:

2PNy g P N23 D226 g D220

b

where the ¢; can be found by linear algebra. For p = 3,5,7,11,13,17,19 one
finds that 1 is equal to:

22520 462220 +323 — 4,28 1 627 + 22220 — 425+ 27 + 3.

The first conclusion is that G cannot be a finite group. The determinant of ¢, is
a polynomial of degree p with highest term —z?. This is not a square in F,2(z)
and the equation u’ + u? = r mod p has no solutions in F,2(z). Therefore G
cannot be reducible group containing G, nor can it be G,,. The only possibi-
lities for G are now S/(2) and the infinite imprimitive subgroup D,. We still
have to exclude the latter possibility.

If G = D, then algebraic solution u of the Riccati equation are the zeroes of
a certain polynomial X2 — aX + b. The element a lies in R and for every p > 2
the reduction mod p of a is equal to /. From the differential equation for f
one sees that f and f’ have no common factor. The degree of f is (p —1)/2.
This shows that a does not exist. We conclude that the differential Galois group
of the Airy equation is .S/(2).

6. HIGHER ORDER EQUATIONS
6.1. Factoring in characteristic p > 0

Suppose that the field £ has the property [k : k?] = p. Let z € k satisty k =
k”|z] and let the differentiation ’ be given by z’ = 1. The fields F(z) and F((z)),
where F is a finite field or the algebraic closure of F,, will be called special fields.
For those fields one can write algorithms.

The differential operator L, that we want to factor, is supposed to be monic
and to have degree n. The operator L induces a differential module N :=
k[8]/k[0] L of dimension n over k. Let e denote the image of 1 € £[0] in N. Then
e, Oe,..., 0" leis a basis of N.

384



The monic left hand factors of degree d of L are in a one-to-one correspon-
dence with the submodules M of dimension d over k of N. Indeed, for a sub-
module M there is a minimal monic operator L, of degree n — d such that
Lree M. Then L = L; L, holds for some monic L; of degree d. On the other
hand, a factorization L = L, L, with L, I, monic of degrees & and n — d gives
rise to the submodule M with basis Lye, dLse,..., 0% ' Lse.

The classification (see 2.1) applied to NV gives in principle the possible sub-
modules M of N and all the factorizations of L. We have to see how this can be
done in an algorithmic way.

6.1.1. Calculation of 1, and its characteristic polynomial G(T')

The matrix of the k-linear operator 1, with respect to the basis e, Oe, . . .,
9"~ le can be calculated as follows. Using the Euclidean division in k[d] one
finds expressions 07"/ = 4; L + B; fori=0,...,n — | with degree(B;) < n. The
Bye, ..., B,_1e are the columns of the matrix of ,. Indeed, w,,(")‘ie = 9Ptie =
(4; L + Bj)e = B;e. In principle the characteristic polynomial G(T) of v, is
computable.

An alternative way would be to calculate the characteristic polynomial F(T')
of @ seen as a k”-linear map on N. Using G(T') = F(T'/?) one finds G(T). This
shows moreover that F(T) € k”[T?] and we have to compute only n + 1 coetfi-
cients in k?.

6.1.2. Factoring G(T')

If the factorization G(T') = F{"" - -- F/™ is known then one can explicitly find
the decomposition N = @;_, N;. A certain factorization of L is a consequence
of this.

For special fields k it seems possible to factor polynomials over k. If k = F(z)
then we have to consider in fact factorizations of polynomials over F[z]. This is
done by factorizations over F[z]/m for various maximal ideals m.

If k = F{(z)) then one uses Newton polygons and Newton approximation to
find a factorization over F((z)).

The special case where one wants to find /inear factors (or zeroes in k) of
G(T) is rather easy. For k = F(z) one writes G(T') as

a;l(anT"+---+a1T+a0),

where ap, . .., a, € F[z?] have g.c.d. 1. The zeroes of G(T') in k? have the form
a/b where a is a divisor of gy and where b is a monic divisor of a,,.

For k = F((z)) the Newton polygon of G(T") determines the valuations of the
possible zeroes of G(T) in k7. By Newton approximation one can calculate a
zero in k7 up to any order.

6.1.3. Left hand factors of degree 1

We are looking for the possible factorizations
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L=0@+u)(0"  '"+a,_ 20" 2+ +a).

The vector m == age +a;8e +--- +a, o, + 8" 'e € N has the property Om =
—um. From Om = —um one can deduce that ,m = —(u'?~" + u”)m. The ele-
ment —(u?~ D 4 4”) lies in k. Therefore m is an eigenvector of ¥, corre-
sponding to an eigenvalue of v, belonging to k7.

On the other hand suppose that we have found an eigenvector m = age +
@mde+ - +a,_,+ 0" leof 1, corresponding to an eigenvalue X € k” of 1,.
Since 1, and 0 commute and X' = 0 one finds that ,(0m) = Aom. If the kernel
M of 1y, — Aon N has dimension one over k then Om = um for some u € k and
we found a left hand factor of degree 1.

If the kernel M of v, — A has dimension greater than 1 then according to the
classification N contains at least a direct sum 7(F?) @ I(F?) where F = 67 — .
It follows that N contains infinitely many copies of 7{F) and so L has infinitely
many left hand factors of degree 1. In this case it seems not useful to calculate
one of those left hand factors.

6.2. Left hand factors of degree one over Q(z)

The operator L € Q(z)[d] is supposed to be monic of degree n. The denomi-
nator of L is defined to be the smallest positive integer m such that mL € R[J).
Suppose that there is a decomposition

L=(0+4u)(0" '"+a,_,0" >+ +a),

with u,a,_2,...,ap € Q(z). Let p be a prime not dividing m then we know that
p does not divide the denominators of the two terms. Therefore one finds a de-
composition of L mod p. In particular, 3 + u mod p is a left hand factor of
L mod p. In the sequel we will suppose for convenience that m = 1.

If one is in the lucky situation that for every zero A in k7 of the characteristic
polynomial of the 9, there is only one eigenvector then the number of possibi-
lities for  mod p is < n. Each possible # mod p can be lifted to an element of
R C Q(z) in the way described in 4.3. One finds then a number of guesses
uy, ..., u; with s < n for u. Division of L by the d + u; may lead to a factoriza-
tion of L.

If no factorization is found then one has several possibilities to continue the
search for u. The first one tries to solve L = (8 + u)(0" ' + ---) modulo p? (or
modulo higher powers of p). This can be done as follows:

Let vy denote one of the u;. Write L = (0 + vy) 4 + pf (division of L by
(04 vo)) where f € R. Let v € F,(z) and B € F,(z)[0] of degree less thann — 1.
Then we want to solve

L= (04 v +pv)(4+ Bp)mod p>.

This amounts to the equation v; 4 + (8 + vo) B = f mod p. In making this ex-
plicit one finds an inhomogeneous differential equation K(v;) = f of order
n — 1 for v;. The assumption that X € k7 is a simple zero of G(T'} implies that
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K(w) = 0 has no solutions w # 0 in k. It follows that the k”-linear operator
K : k — kisinvertible. Linear algebra over k? yields the unique v;.

A second possibility is to take another prime ¢ and use the information of
L mod ¢. This can give a finite number of guesses for # modulo pq.

It is not clear at the moment how efficient the method above will be.
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